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SECTION 1.0
INTRODUCTION AND SUMMARY

Thisreportdocuments theSpace TransportationMain Engine(STME) Main InjectorTechnologyand Nozzle

Advanced Development Programs (ADP) under NASA Marshall Space Flight Center (NASA-MSFC) Contract
NAS8-37490.

1.1 MAIN INJECTOR PROGRAM

The purpose of the STME Main Injector Program was to enhance the technology base for the large-scale main

injector-combustor system of oxygen-hydrogen booster engines in the areas of combustion efficiency, chamber

heating rates, and combustion stability. The initial task of the Main Injector Program, focused on analysis and
theoretical predictions using existing models, was complemented by the design, fabrication, and test at MSFC

of a subscale calorimetric, 40,000-pound thrust class, axisymnetric thrust chamber operating at approximately

2,250 psi and a 7:1 expansion ratio. Test results were used to further define combustion stability bounds,

combustion efficiency, and heating rates using a large injeaor scale similar to the Pratt & Whitney (P&W)

STME main injector design configuration, including the tangential entry swirl coaxial injection elencnts. The

subscale combustion data was used to verify and refine analytical modeling simulation and extend the database

range to guide the design of the large-scale system main injector. The subscale injector design incorporated fuel

and oxidizer flow area control features which could be varied; this allowed testing of several design points so

that the STME conditions could be bracketed. The subscale injector design also incorporated high-reliability

and low-cost fabrication techniques such as a one-piece electrical discharged machined (EDMed) interpropeUam

plate. Both subscale and large-scale injectors incorporated outer row injector elements with scarfed tip features
to allow evaluation of reduced heating rates to the combustion chamber.

The Main InjectorProgram was to culminatein testingof a large-scalehigh-pressure580,000-poundclass

thrustchamber-injector.This large-scaletestingwas toincludeattempteddestabilizationby detonationof bomb

devicesinthechamber. The large-scaleinjectordidnot incorporatethefueland oxidizerareavariabilityfeatures

of the subscale,but itdid includethe low costfabricationconceptof a one-pieceEDMed interpropellantplate.

The large-scaleinjectortestswere toprovidethenecessarycombustiontechnologyrequiredatthehigherpressure

and colderfueltemperaturesof the P&W STME configuration.

The STME Main InjectorProgram was originallythe Space TransportationBoosterEngine (STBE) Main

InjectorProgram, and was to be a tripropellantprogram, burningoxygen, methane, and hydrogen. However,

beforethe initialdesignof the subscaleinjectorwas completed,thecontractwas modifiedin August 1989 and

the methane was dropped and the STBE became the bipropellantSTME, burningoxygen and hydrogen. All

program tasksremained essentiallythe same.

Originally, in the STBE phase, the P&W large-scale injector design used an acoustic liner spoolpiece

combustion stability aid in the chamber. However, when efforts concentrated on hydrogen fueled engines, it was

decided, with NASA concurrence, that the acoustic liner could be dropped. The subscale combustion chamber

was redesigned to remove the acoustic liner feature. An acoustic liner spool piece for the large scale injector

program was designed prior to dropping methane, however, P&W procured raw material for risk mitigation should
an instability issue arise. The acoustic liner was designed to allow addition to the baseline test configuration

between t_ in)ector and the chamber in place of the NASA-supplied insmm,,entation ring.

The tasks performed under this contact for the injector were as follows:

• Section 1.0 -- Analysis of combustion stability, performance, and chamber heating rates
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Section 2.0 -- 40K Subscale Task: Design, analysis, fabrication, and test of a 40K subscale injector,

igniter, calorimeter combustion chamber, and transition spoolpiece

Section 3.0 -- Large Scale Injector Task: Design, fabrication, and test of a large scale (580K) injector
including a thrust mount assembly and acoustic liner.

The efforts in section 2.0 were completed, however, the hardware designed and fabricated in Section 3.0

was not tested when in, October 1992, program funding was reduced and a stop work order was received from

NASA-MSFC. In August 1993, direction was received to stop work on the program with submittal of this final
report, and shipment of specified materials to NASA-MSFC.

1.2 NOZZLE DEVELOPMENT ADP

The Nozzle ADP consisted of two tasks: a nozzle skirt fabrication task and a subscale nozzle task. These

tasks were selected to assess the two areas of highest technical risk -- nozzle skirt low-cost fabrication and

nozzle skirt film/convective dump cooling -- identified at Govemmen_industry STME cycle selection activity
in July 1990. These efforts are detailed in the following sections:

• Section 4.0 -- Nozzle Fabrication Demonstration:

-- Phase I -- Sample fabrication trials of key nozzle skirt concepts

-- Phase II -- Sample fabrication trials to support large scale nozzle

Section 5.0 -- Subscale Nozzle Fabrication and Test Support: Design, analysis, fabrication, and test
of a 40K pound thrust size nozzle.

The fabrication task (Section 4.0) provided demonstration of key nozzle skirt fabrication technologies in

support of the STME Phase B Preliminary Design. This portion of the program consisted of a subscale sample

investigation (Phase I) and a large-scale size scaleup evaluation (Phase II). Phase I investigated the feasibility

and producibility of various materials, geometries, and fabrication methods for nozzle skin tubular concepts and
sheeunetal concepts. Following the completion of Phase I, methods where selected for continued evaluation in

the Phase II portion of the program based on each method's reliability, cost, durability, weight, and performance.

The Phase II portion was to assess the large-scale related process capabilities and sensitivities by perforating
fabrication trials to support the selection of a fabrication method.

Section 5.0 involved the design, fabrication, and test of a large calorimeter nozzle configm'ation. The task

was to evaluate film cooling and the optimum flow splits between primary film/convective cooling and secondary

(subsonic) cooling, along with the effects of various film injector geometries. The nozzle was designed to be
used with the 40K subscale injector and main chamber in the previously described sections.

um., 1-2
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SECTION 2.0
40K SUBSCALE TASK

2.1 40K SUBSCALE INJECTOR

2.1,1 40K Subscale Injector Design

Figure 2.1.1-1 shows a cross-section of the subscale injector design. Hydrogen fuel enters through a INCO

625 Greyloc flange and passes into the INCO 718 manifold. This manifold is EB welded at two locations to
the INCO 718 injector housing. The fuel passes through twelve 0.500-inch diameter crossover slots into the
fuel cavity, from which it is fed into the combustion chamber through the INCO 718 fuel sleeves and the 347
stainless steel porous faceplate. LOX enters through two 1.5-inch schedule 80, 321 stainless steel pipes. From
there it travels into the LOX elements through tangential entry slots and into the combustion chamber. Each
of the 62 LOX injectors are tangential-entry, swirl-coaxial elements which produce a hollow-cone spray with
an average drop size of 15 to 20 microns at normal operating coaditions. The tangential entry swirl concept
is shown in Figure 2.1.1-2.

The view of the injector face in Figure 2. I. 1-3 shows the injector element pattern. TWenty six of the sixty

two elements form a circular outer row, while the remaining thirty six elements fall into a hex pattern in the

infield. The igniter comes through the very center of the injector.

The subscale (as well as the large scale) injector features a one-piece electrodischarge machined (EDMed)

interpropellant plate with integral LOX elements. This plate has a significant advantage over other interpropellant
plate designs with brazed or welded elements because the is no weld or braze joint to provide a possible leak

path between oxidizer and fuel. Therefore, the one-piece design is not only significantly more reliable, but it

also eliminates the extensive and costly inspection required for a prime reliable braze or weld joint. Another

cost advantage can be seen in the EDM process, which allows all or many of the elements to be machined

at once ("gang EDM").

A part of the planned subscale testing involved biasing the mixture ratio. By reducing mixture ratio of the

outer injector elements, the combustor wall heat flux can be reduced and durability enhanced. It was also desired

to run various injector geometries (fuel and LOX flow areas) so that the injector geometry could be optimized for

the highest performance. Therefore flexibility features were incorporated into the design of the injector elements,

so that the injector elements could be run with various fuel and LOX flow areas. A closeup of an element with

its flexibility features can be found in Figure 2.1.1..-4.

The subscale injector elements feature removable facenuts on each element allowing the fuel flow metering

areas to be varied. The fuel flow area (and thus the O/F ratio) for the entire injector may be changed, or the

O/F ratio may be biased for chamber wall compatibility by using facenuts with different annulus sizes on the

outer row. The facenuts are secured with purple Loctite, a low-strength thread-locking compound. The facenut

changeout can be accomplished through the chamber throat without removing the injector.

Because there was no previous experience with Loctite at cryogenic temperatures, tests were performed on

the Loctite to make sure that it retained its thread locking abilities when subjected to very cold temperatures.

Tests performed with liquid nitrogen show that the Loctite performed extremely well at cryogenic temperatures,

actually strengthening without suffering embrittlement problems, then returning to room temperature properties

when its temperature was allowed to return to ambient.

The LOX flow areas may also be varied by internal plugs which screw up into the LOX post to block off

a portion of the tangential entry slots as shown in Figure 2. I. 1--4. The plugs are installed from the face of the

_=., 2-1
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injector so they can be installed or removed on the test stand without need for removing-the injector. The LOX

flow metering plugs are held in place by Spiralock self locking threads on the LOX post.

Otherfeatureswhich enhancecombustionchamber wallduribility_inadditiontoO/F biasing,areincorporated

intothedesignofthe subscaleinjector.The LOX elementson theouterrow arescarfed(cutata 45-degreeangle

relativetotheinjectorcenterline,suchthattheshortestsideof theinjectorexitisclosesttothechamber centerline

and flush with the injector faceplate, as shown in Figure 2.1.1-5) to shift the spray cone and prevent impingement

of LOX on the combustor wall. Figures 2.1.1-6 and 2.1.1-7 show water flows of an inner element and an outer

row scarfed element respectively. The effect of the scarf on the spray cone angle can be seen clearly. Note that
not only does the scarf shift the spray cone towards the center of the plate, but the scarf also shifts the majority

of the mass flow towards the injector center. Pauem tests of the spray cone of this element design conducted

in other programs have shown that two-thirds of the LOX flow is directed toward the injector centerline. With

a normal element the mass is distributed evenly so only one half of the mass goes toward the center of the

combustor. The mass distributions of a scarfed and an unscarred element are shown in Figure 2.1.1-5. Tests show

that this distribution is invariant over a range of flow rates and velocities representative of chamber conditions.

Thus, scarfing skews the LOX toward the chamber center, which lowers the O/F rnixmre ratio near the wall.

The injectoras originallybuiltalsofeaturedfilmcoolingto furtherenhance wallcompatibility.Fiftytwo

filmcoolingholes(two perouterrow element)were drilledintotheporousfaceplatejustoutsideof theouterrow

of elementsas shown in Figure2.I.I-8.During the testingatMSFC, thesefilmcoolingorificeswere welded

shutin orderto deactivatethe filmcoolingfeature.
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Figure 2.1.1-2. Tangential LOX Entry Swirl Concept
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Figure 2.1.1-3. Subscale Injector Element Pattern
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LOX ELEMENT END CAP

LOX FLOW METERING PLUG

TANGENTIAL LOX ENTRY SLOT

INTERPROPELLANT PLATE

FUEL SLEEVE

FACENUT

FILM COOLING HOLE

FACEPLATE

SCARF ON OUTER ROW ELEMENTS

Figure 2.1.1--4. Subscale Injector Element Assembly
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Figure 2.1.1-5. Mass Distributions of Scarfed and Unscarfed Elements
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FEE-3

Figure 2.1.1-6. Water Flow of Typical Inner Element (100 psid)

F_-4

Figure 2.1.1-7. Water Flow of Typical Outer Row Element (100 psid)
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Figure 2.1.1--8. Film Cooling Holes
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2.1.2 40K Subscale Injector Design History

Although originally conceived as a _pmpellant engine burning oxygen, methane, and hydrogen, by the time F

of the initial subscale injector design the STBE had become a bipropellam engine burning LOX and methane.

The initial design did not have the fuel and LOX area flexibility features of the final design, nor did it have a
one-piece, EDMed interpropeilant plate with integral LOX elements. Instead it had the standard, well-proven

design of fixed area elements brazed into a separate interpropellam plate.

Figure 2.1.2-1 shows a cross section of the initial subscale injector design, which was designed to burn

methane. The propellant towpath is similar to the current design. Methane enters through a 316 stainless steel

flange and passes into the INCO 718 manifold. This manifold is EB welded at two locations to the INCO 718

injector housing. The fuel passes through twelve 0.500-inch diameter crossover slots into the fuel cavity, from

which it is fed into the combustion chamber through the Haynes 230 nickel alloy fuel elements and the 347

stainless steel porous faceplate. LOX enters through two 1.5-inch schedule 80, 347 stainless steel pipes. From

there it travels into the LOX elements through tangential entry slots and into the combustion chamber.

Assembly of the injector would have included three braze cycles. The first would join the LOX elements

to the fuel elements, using a gold-nickel-palladium alloy at 2150°F maximum. The second cycle would braze

the element assemblies to the interpropeIlant plate, using a lower melting temperature gold-nickel-palladium
alloy at 1975°F maximum. Both sides of this braze would then accessible for visual inspection and a helium

mass spectrometer leak check. The final braze would then be gold-nickel alloy at 1845F maximum to join the
faceplate to the elements.

1NCO 718 was chosen as the material for injector housing excellent strength, availability, good weldability,

and brazeability. A-286 was also a candidate, but to have complete inspectability of the interpropellant plate

braze joint, three braze cycles had to be used. This meant that the housing had to be exposed to a 1975°F braze

cycle. There was a concern that A-286 could suffer significant grain size growth with a corresponding reduction
in properties, so INCO 718 was chosen. Although hydrogen embrittlement was not a concern at this time (since

methane was to used as the fuel), it was desired to have the flexibility to run hydrogen if required in the furore.

If hydrogen were to be used at some time in the future, the fully debited INCO 718 mechanical properties used

in this design could still meet structural safety margins at the design operating pressures.

To enhance chamber wall compatibility, the outer row of elements featured removable fuel elements so that

the O/F ratio could be biased by using fuel elements with different annulus sizes. Figure 2.1.2-2 shows the

fuel element which would be screwed onto a brazed, threaded ring on the LOX element The sleeve would be

secured either with the use of a thread-locking compound (i.e., Loctite) or by staking at the injector faceplate.

It was intended that the fuel element change out be accomplished without removing [he injector;, however, the
injector was designed to be removed from the test stand without dismounting the entire rig and breaking down
the coolant lines to the combustion chamber.

To further enhance chamber wall compatibility, the LOX elements were also scarfed to shift the spray cone

and prevent impingement of LOX on the combustor wall.

In December 1988 P&W completed an alternate injector design. The new design, which was essentially

the current design, incorporated fuel and LOX area flexibility features to allow testing of several different

design points as well as mixture ratio biasing. These features, the facenuts and LOX flow metering plugs, are

described under the current subscale injector design. The new injector design also incorporated the low-cost,

one-piece interpropellam plate with integral elements, which is also described under the current design. At first

the original injector design was kept as the baseline while the new design was only pursued as an altemav

But before fabrication of the injector began, the original baseline injector design was dropped and the ne,___

design became the baseline.
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The new design would allow testing of three planned injector operating configurations: The STBE Unique

burning LOX and methane at a chamber pressure (Pc) of 3000 psi, the STBE Derivative burning LOX and

methane at a Pc of 2250 psi, and the STME Unique burning LOX and hydrogen at a Pc of 2250 psi. Outer

row mixture ratio biasing at each of these configurations was also planned. The facenut is, which determine

fuel annulus gap, and the LOX flow metering plug lengths, which determine LOX slot length, were define for

all planned injector geometries.

A vibratory analysis of the injector elements was done to confirm the analytical model prediction that the
vibratory modes of the elements do not coincide with the combustion excitation frequencies. The sample subscale

interpropellant plate, which has elements identical to those of the actual interpropellant plate used in the subscale

injector, was clamped down to simulate the stiffness of the injector assembly, and an element was mechanically
excited. An accelerometer mounted onto the element measured the element acceleration forces and frequencies.

This procedure was repeated for several elements. The results show that no element modes existed within 10

percent of any likely combustion excitation frequency at Rated Power Level flU'L). Figure 2.1.2-3 shows a plot
of magnitude versus frequency for a typical element and gives the likely combustion excitation frequencies.

During a review of the injector fabrication, a potential tolerance stack-up problem between the housing and

faceplate was found. With the variable geometry design, the faceplate was not welded into the injector, but

secured by the fuel facenuts. There was a possible stack-up problem on the assembly of the injector details that

would have allowed a gap between the faceplate and injector housing. This gap would have allowed fuel to

leak mound the faceplate resulting in less fuel going to the elements, driving up the mixture ratio. To correct

this problem, the recess in the faceplate was machined to accept a seal that would assure that there would be

a positive seal at the edge of the faceplate so that all fuel is directed to the elements and through the porous
face. This modification is shown in Figure 2.1.2-4.

A concept for allowing film cooling in the subscale rig was developed. This would have allowed test

demonstration of different levels of film cooling as well as elimination of film cooling. Replaceable orifices were

located adjacent to each outer row injector element as shown in Figure 2.1.2-5. The orifices were trapped under

the replaceable fuel sleeves and could be changed without removal of the injector from the combustor.
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Figure 2.1.2-1. Subscale Injector Cross-Section

Figure 2.1.2-2. Outer Row Element Concept
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Figure 2.1.2-5. Outer Row Injector Element Replaceable Film Cooling Orifice

2.1.3 Subscale Injector Fabrication History

2.1.3.1 Interpropeilant Plate Sample

A sample of the integral element interpropellant plate was fabricated by the interpropellant plate vendor

and is shown in Figure 2.1.3-1. This sample was a small wedge section of the injector plate consisting of 14
elements. The sample was used to develop and verify the process for creating the elements and for removal --

of the recast layer t and was also water flow calibrated at P&W to verify that the manufacturing technique
produced elements with acceptable effective flow areas and spray cone angles. Tests were also made to verify

the effectiveness of the LOX flow metering plugs.

A flow fixture for flowing individual elements of the integral element interpropellant plate was designed and
fabricated. This fixture, shown in Figures 2.1.3-2 and 2.1.3-3 allowed water flow calibration of each element to

determine the effective flow area and the element-to-element area variation. These results provided a verification

that the design goal has been met and a confidence in the repeatability of the manufacturing process. Water

flow testing was conducted on the machining sample of the interpropellant plate before releasing the actual
intexpropellantplate for final fabrication.

The watel" flow testing of the sample interpropeilant plate was conducted on P&W's E-26 pump-fed injector
water flow test stand. A photo of an element flowing with 100 psi differential pressure is shown in Figure

2.1.3-4. The water flows indicated that the effective flow areas of the elements were slightly lower than
expected. Furthermore, all of the inner elements flowed lower than the outer row of elements. The actual ACds

of the outer elements ranged from 95 to 99 percent of nominal, which is within the desired tolerance of plus or

minus 5 percent of nominal. The actual ACds of the inner elements, however, were only 91 to 94 percent of

nominal. This pattern remained the same when the interpropellant plate was flowed on different days and when
the LOX flow restricting plugs were installed in the elements.

The length and width of each LOX entry slot was carefully inspected to determine if variations in slot
dimensions caused the difference in effective flow areas between the outer row of elements and the inner

elements. The inspection results showed that the actual physical areas of the slots of all the elements were below

nominal, and that the slots on the inner elements were slightly smaller than the slots on the outer row elements.
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Sixty-seven percent of the inner element slots were shorter than allowed by the blueprint, while only 56 percent
of the outer element slots were too short. More significantly, the outer element slots were wider than the inner

element slots.The averagewidth of theouterelementslotswas almost0.0006 inch greaterthanthe average

width of theinnerelementslots,a significantdifference.This inspectionof the slotsalsorevealedthatmany

slots,especiallyinnerelementslots,were slightlywider at thetop thanatthe bottom.

Since the dimensions of all of the slots were below nominal, the slots were rcworkcd to nominal. The

reworkcd elementsof the sample interpropellantplatewere waterflow testedagain.The innerelements that

had been fullyreworkcd flowedvery closeto thenominal flowrate.There was stilla differencebetween the

flowratesof theouterrow elementsand the innerelementsbecausethe outerelementslotswere largerbefore

rework and were inadvertentlyreworkcd to largerthan nominal size.

Tic cause of the innerelement slotsbeing smallerthan tlcouterrow element slotswas EDM electrode

wear. The electrodeswere changed infrequently,allowingthem towear down from slotto sloLThe solutionto

the wear problem wig be to monitortheelectrodesforwear and change them frequently.

The sample interpropellant plate was sent to the chemical milling vendor for EDM recast layer removal.

The vendor chemical milled the LOX side of the sample to determine if the chemical milling process can hold

the tolerances required. Because tbe tolerances for the fucl sleeve braze had to be held tighter than could be
achieved with chemical milling the complex shape of the interpropellant plate, it was decided to mechanically
remove the recast layer oil the facl side of the elements using a "hollow hone" to achieve the required tolerances.
The tolerancesachievedwithchemicalmillingwere acceptableeverywhereelseon thepart,exceptfortheLOX

entryslots.The recastlayerwas not removed from the LOX entryslotsbecauseno acceptablemethod was

found toremove the recastinthe slotsand stillmaintainthetighttolerancesrequiredintheslots.The presence

of recastin the slotsdoes not significantlyaffectpartlife.
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Figure 2.1.3-2. Subscale Injector Integral Element Flow Fixture
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2.1.&2 Inmrpropellant Plate

The interpropellant plate with its integral LOX elements was machined in one piece from a pancake forging.

F'n-st the OD and ID of the plate were rough tamed. Next the element inside diameters were installed. It was the

vendor's original intention to drill and then ream the element IDs. However, when the pilot holes were drilled,
the drill walked, and the holes were not straight. The holes were then EDMed straight and reamed to final size

to remove the recast layer. Afterwards the SpiraUock threads were tapped into the top of the LOX side. Next an
EDM electrode like the one shown in Figure 2.1.3-5 was machined. This electrode rough EDMed all 62 ODs to

within 0.010 inch per side of the finished dimension at once. The process of EDMing many features at once is

referred to at P&W as "gang" EDMing. After rough EDMing, the element ODs were inspected to ensure that they

were in the correct positions. Using this inspection data, a finishing electrode was fabricated to gang EDM all 62

element ODs to within 0.002" per side of the finished dimension. The remaining excess material was removed

when the recast layer was removed. Just as with the sample, The recast on the f_el sides of the LOX elements

was removed with a hollow hone, while the recast layer everywhere else was removed by chemical milling. The
recast layer on the element IDs was removed when they were reamed to final size. Finally, the tangential LOX

entry slots were EDMed into the elements. The recast layer was not removed from the LOX entry slots.

The LOX entry slots were installed with a tool developed by the vendor, which EDMed all three slots into

a single element at once. This tool located off the OD of the LOX side of the element and had three arms, each

holding an electrode, which moved down into position to install the slots.

After the interpropellant plate with integral LOX elements, shown in Figure 2.1.3-6, was completed, it was
water flow tested at P&W. Water flow testing confirmed that 59 of the 62 elements flowed within the desired

5 percent of the target value. The other three elements were within 6 percent of the target value and were not

concentrated at any one location on the plate and therefore did not have a significant effect on combustor wal

compatibility or injector performance. A chart of effective flow area as a percentage of nominal for each element

is shown in Figure 2.1.3-7. As can be seen, there is no pattern of difference between the outer row elements

(1 through 26) and the inner elements (27 through 62) like there was on the sample interpropellant plate. The

average of the effective flow areas was below the target value due to conservatism in the manufacture of the

slots. The supplier targeted the process to maximum material condition (the reworkable side of the tolerance

band), which resulted in the target area of the slot being slightly below the design target value. This condition is
easily correctable, but was of no consequence. All of the elements flowed within 5 percent of the mean, with the

majority (about 57 of 62) flowing within approximately 2 percent of the mean. Figure 2.1.3-8 shows a Weibuil

plot of the element effective flow areas. Note that the standard deviation was only 0.00025 in 2. The implied

6-sigma (99.73 percent) process capability for this first part was already well within the design requirements and

would improve significantly with the production of more parts, i.e., the learning curve effect.

Figures 2.1.1-6 and 2.1.1-7 show water flows of an inner element and an outer row scarfed element

respectively. The effect of the scarf on the spray cone angle can be seen clearly. Note that not only does the

scarf shift the spray cone towards the center of the plate, but the scarf also shifts the majority of the mass flow

towards the injector center. Pattern tests of the spray cone of this element design conducted in other programs
have shown that two-thirds of the LOX flow is directed toward the injector centerline. This feature has proven

to enhance injector-chamber wall compatibility.

After the elements were water flow tested to verify proper effective flow area, The LOX element end bolts

were sized to fit individual elements. These bolts were to be ground to size so that when a LOX flow metering

plug is installed, it will be at the proper position when it seats against the bolts. This was-done by setting the

position of a gage LOX metering plug, whose length is held to a tolerance of _+0.0001 inch, so that the elemer
achieves the correct water flow rate. The LOX element end bolt was then be ground to fit, and then lam__i

installed and tack welded in place. This same procedure was repeated for ¢_ach element, and as a result, the LOX
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flow metcringplugscouldbe installedrandomly acrossthe intcrpropcllantplate.This installationprocedurefor

the LOX element end bolts took place before the intcrpropeHant plate was welded into the injector housing.
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Figure 2.1.3-6. Subscale lnterpropeUant Plate
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Figure 2.1.3-8. WeibuU Plot of Element Effective Flow Areas

2.1.3.3 Injector Details

The fuel manifold outer ring and the injector housing were conventionally machined from INCO 718 pancake

forgings at P&W. The igniter sleeve was conventionally machined from Haynes 230 rod at P&W. The remaining

injector details, such as the faceplate, inteq)ropellant plate, facenuts, LOX flow metering plugs, LOX element
end caps, fuel sleeves, LOX dome, lifting eye, and fuel and LOX inlet flanges and piping were purchased from
various outside vendors.

The faceplate was made from 1/4-inch thick 347 stainless steel porous plate. This porous plate was made

by sintering together sheets of wire mesh. The plate had a flowrate of 190 SCFM/ft 2 per minute at 2 psig. The

interpropellant plate, LOX dome, LOX flow metering plugs, fuel sleeves and lifting eye were all made from

INCO 718. The facenuts were made from Haynes 230, While the fuel inlet flange was made from INCO 625.
The LOX inlet piping and flange were made from stainless steel.

The LOX dome was sent to TS 116 test stand at NASA-MSFC for the field welding of the LOX inlet

piping. This was done so that the entire rig could be assembled at P&W and delivered to "IS 116 ready for quick

mounting. The LOX dome was mounted onto a fixture which simulated the injector and correctly positioned the

LOX dome. The LOX inlet piping was then fitted, trimmed, and welded into place. The LOX dome was then

returned to the vendor for final machining and inspection. Having the LOX inlet piping already welded on also

facilitated the proof pressure testing and water flow testing of the injector assembly.

2.1.3.4 Injector Fabrication

Five braze samples, as shown in Figure 2.1.3-9, were processed to simulate a fuel sleeve brazed onto an

element. All were made from INCO 718 and brazed with a gold-nickel braze with the same materials, fits,

and processes that were used on the actual part. A photograph of one of the samples, along with its braze
concentricity tool, is shown in Figure 2.1.3-10. Since the brazes in the actual injector were to be verified with

a load test, these samples were used not only to prove that the brazing method produced a strong joint but alse

to show that the load test verification will not harm a sound, good quality braze joint. The first sample was

subjected to a uniaxial load of 150 lb. The braze joints in the actual injector will only experience a load of less
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than 89 lb. This first sample was pull tested to 150 lb four additional times and then cut up to check the braze

coverage. It was found to have 100 percent coverage with excellent wetting on both sides of the joint.

The nextfourbrazesamples were X-ray inspectedand no voidswere indicated.The sampleswere thenpull

testedto 150 Ibfivestimesand X-rayedagain.No indicationsofbrazefailurewere found.One ofthesesamples

was thensubjectedtoan increasinguniaxialloaduntilfailure.The sample failedata loadof 1740 lb.However,

the failure occurred at the threads of the fuel sleeve rather than the braze joint. Another sample was subjected to a

cyclic load of 150 Ib at a rate of 80 to I00 cycles per minute. The sample survived 50,000 cycles without failure.

The fuel sleeve was kept concentric to the LOX post by using a simple tool which is shown with the

sample in Figure 2.1.3-I0. This tool is inserted into the annulus between the fuel sleeve and the LOX post
before brazing. During the braze cycle, the tool holds the fuel sleeve concentric to the LOX element. The tool

is removed after the braze cycle. With each of the five samples, some diffusion bonding occurred between the

concentricity tool and the LOX element because of contact between the tool, which was made of INCO 718, and

the nickel plating added to the LOX element for enhancement of braze alloy wetting. The LOX element had

been nickel plated along its entire length in order to avoid having to mask off pans of the element. Removing

the tool was difficult and resulted in significant galling of the LOX element. To solve this problem, the LOX

element will be nickel plated only in the area of the braze joint. The braze concentricity tool was redesigned

by making it shorter and rounding off the sharp edges to prevent it from contacting the nickel plating. Another

brazesamplewas run withtheredesignedbrazeconcentricitytool.The brazeitselfwas ofgood quality,but the

toolagainbonded to theLOX clement.A cutup of thesample showed thatsome excessbrazealloyflowedup

toand inbetween the concentricitytooland theLOX element,joiningthem. The cutup alsoshowed thatsomc

diffusionbonding occurredbetween thc tooland the LOX element.

Additional braze samples, simulating the fuel sleeve to LOX element braze, were run with a redesigned

braze concentricity tool to solve the problem of the tool bonding to the LOX element. The samples and tools

were INCO 718, and a gold-nickel braze alloy was used. Three samples were run and none of them showed

any bonding between the new braze tools and the LOX elements. The redesigned braze concentricity tool is

shown in Figure 2.1.3-I1. A recess was added to the inside diameter of the tool to decrease the area of contact
between thc tool and thc LOX element.

Electron beam (EB) weld samples were run simulating the fuel manifold outer ring to injector housing welds

and the interpropellant plate to injector housing weld. The first set consisted of flat bars of INCO 718 to establish

initial weld schedules. The final EB weld samples were identical in size and geometric shape, in the area of thc
welds, to the actual injector and were made of INCO 718 with the same heat neat as planned for the injector.

The weld Dints were X-ray inspected and no voids or cracks were found. A slice along the diameter was cut

out of the welded sample and is shown in Figure 2.1.3-12. All the welds were of high quality; however, in

one area of one of the fuel manifold-to-injector housing welds there was slight microcracking. Figure 2.1.3-13

shows a photomicrograph of this area. The maximum crack length was only 0.020 in. This microcracking is
not uncommon in INCO 718, especially with the AMS 5664 heat neat, and is not considered significant. The

stresses in the welds were low, and a crack length of up to 0.130 in. would be acceptable for a life of 100

cycles. The microcracking occurred only in a weld on which two passes had to be made because on the first

pass the power level on the EB welder was not set correctly and the weld did not fully penelrate the metal. The

welds which were done correctly on the first pass showed no rnicrocracking.

The lifting eye and fuel inlet flange were first welded to the fuel manifold outer ring, which then was EB

welded to the injector housing. Next the interpropellant plate was also EB welded to the housing. All welds
passed fluorescent-penetrant and X-ray inspections. Figure 2.1.3-14 shows the interpropellant plate and the

injector after the fuel manifold was welded to the housing and before the welding of the interpropellant plate

to the housing. Before the interpropeUant plate was installed in the injector assembly, it was nickel plated in

preparation of the fuel sleeve braze.
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Next, the fuel sleeves were successfully brazed to the LOX elements, and there were no problems with the

braze concentricity tools bonding to the elements. During the same braze cycle, the igniter sleeve was brazec
to the interpropellant plate, and the injector was solution heat treated and stress relieved. All 62 fuel sleeve --

braze join= passed a 150-poundload test,and theignitersleevebrazejointpasseda I00 psidleakcheck.The

injectorwas then precipitationhardened and the LOX dome and combustion chamber interfacesurfaces,the

sealgrooves,and thefaceplaterecesswere finishmachined.The boltbolesand insn'umentationholesinstalled,

and allsealingsurfaceswere lapped.

Delays in the completion of the injector occurred due to rework of the igniter sleeve to repair handling

damage. A large dent was found in top OD of the igniter sleeve. This dent would have prevented the igniter
from fitting down into the sleeve and LOX dome-igniter sleeve seals from sealing on this diameter. Therefore,

the igniter sleeve was repair by cutting off the damaged section, rough machining a new top for the igniter

sleeve, welding it on, and then machining it to final dimensions. Following the repair, the braze of the igniter

sleeve to the interpropeilant plate was leak tested to assure the rework of the igniter sleeve did not adversely
affect the braze joint. A protective cover was made for the igniter sleeve to prevent further handling damage.

Figure 2.1.3-15 shows the LOX side of the completed injector and Figure 2.1.3-16 shows the fuel side

of the injector. The rubber ring was attached to the fuel side face to protect the scarfed tips of the outer row
elements during manufacturing and was removed before injector assembly.

mm

Braze

F FuelSleeve

LOX Element _

Figure 2.1.3-9. Typical Fuel Sleeve Braze Sample
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FE601752

Figure 2.1.3-10. Fuel Sleeve Braze Sample (Right) With Concentricity Tool
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Figure 2.1.3-11. Redesigned Braze Concentricity Tools
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Figure 2.1.3-12. Injector Electron Beam WeldSample
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Figure 2.1.3-13. Injector Electron Beam Weld Sample Section Photomicrograph
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Figure 2.1.3-14. Injector Assembly Before Installation Interpropellant Plate

Figure 2.1.3-15. Subscale Injector LOX Side
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Figure 2.1.3-16. Subscale Injector Fuel Side

2.1.3.5 Injector Assembly

A proof pressure test plate was made to bolt onto the injector at the chamber interface to seal the injector

face off so that the injector could be proof pressure tested. A tool was designed and build to install and remove

the facenuts through the combustion chamber so that the injector did not have to be taken off the test stand for

changeout of the facenuts. A tool was also made to allow changeout of the LOX flow metering plugs, through

the combustion chamber, as well as a tool to allow the changeout of the replaceable film cooling orifices.

After the injector was completed it was assembled to the LOX dome and pressure test tooling to check fits,

check out the assembly tooling, and perform the proof pressure test. Figure 2.1.3-17 shows the disassembled
injector from the LOX side, while Figure 2.1.3-18 shows a closeup of the LOX side with some of the LOX

element end caps installed. Figure 2.1.3-19 shows the disassembled injector from the fuel side, while Figure

2.1.3-20 shows a closeup of the fuel side with the faceplate seal installed. Figure 2.1.3-21 shows a closeup of

the fuel side with the faceplate, the film cooling orifices, and some of the facenuts installed. The faceplate used

in this initial fit-check assembly used replaceable film cooling orifices

A problem occurred during the attempt to install the facenuts, which secure the faceplate, into the fuel

sleeves. When the facenuts were screwed in, the threads began to bind, making them difficult to install. It was

thought that there might be some debris in the very fine threads (40/inch) of the fuel sleeves such as braze
alloy or stopoff from the braze concentricity tool. A simple tool was quickly made to clean the threads. After

the threads were cleaned, the facenuts installed more easily, and the assembly of the injector was completed

for proof pressure testing.

During disassembly of the injector following proof test, it was found that six facenuts could not be removed

due to apparent thread galling. The tool designed to allow removal and installation of the facenuts with the
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injector installed onto the chamber was broken in the attempt to remove these facenuts, and a stronger tool

was fabricated to allow for the application of higher torque for removal. The removal was accomplished witi
this tool, and damage to the facenut threads was noted confirming that thread galling had occurred. The thread

damage appears to be confined primarily to the facenuts because these were fabricated from a softer material

(Haynes 230) than the fuel sleeves (INCO 718).

It appeared that the binding of the facenuts may have been due to a small shrinkage of the fuel sleeves

during the precipitation heat treat of the Incone] 718 material. Some fuel sleeves also appear to be out of round.
This condition was probably also caused by distortion during the precipitation heat treat. To correct this situation,

a thread chasing tool was designed and made. This tool, unlike the first, actually cut the threads to the correct

size rather than just cleaning out debris. Due to the successful removal of the other 56 facenuts, it was not

expected that a significant amount of material will need to be removed to provide the proper thread fit to the
facenuts. The threads of all 62 fuel sleeves were chased.

The use of Loctite thread locking compound on the facenuts also facilitated the installation and removal of

the facenuts.The Loctiteactsas an anti-gallantand no otherlubricantor anti-gallantisrequired.There have

been no instancesof facenutsbindingsincethe fuelsleevethreadswere chased with thenew tooland Loctite

was used duringassembly.Loctiteon thefacenutthreadsisrequiredby theinjectorbuilddrawing,but was not

used on theinitialfitcheck since,atthattime,the facenutsdid not need tobe lockedinplace.

While the injector facenut problem was being resolved, several modifications were made to the configuration

change tooling. The three tabs which slide into the slots on the head of the facenut were replaced with stronger

material following the failure during the facenut removal attempt. While this tool was being repaired, it was
also modified to hold the facenut more securely. The LOX flow metering plug installation/removal tool was

also modified to be sturdier and to have a replaceable tip. The film cooling orifice installation/removal tool wa"

reworked to correctinterferencewith the faceplate. .._+

For the proof pressure test of the injector assembly, the proof pressure test plate was installed on the injector

at the combustion chamber interface and the injector was coated with Stresscoat brittle lacquer, which cracks

at 650 to 700 microstrain. The injector was scheduled to be pressurized to 3000 psig (l.2x maximum design

operating pressure of 2500 psi) with water in increments of 500 psig. However, at 1500 psig, cracks in the

Stresscoat began to appear on the LOX inlet elbows at the outside of the bend. At 2000 psig a clear pattern
of cracks had appeared in the Stresscoat on both the outer and inner surfaces of the elbows indicating higher

than expected stresses (about 20 ksi versus 8.5 ksi) in the hoop direction. At this point testing was suspended,

photographs of the crack patterns in the Su'esscoat were taken, and strain gages were applied to the higher stress

areas indicated by the Stresscoat pattern. Figure 2.1.3-22 shows a typical Stresscoat crack pattern.

After the strain gages were installed, proof testing resumed. The injector was pressurized in 500 psig

increments to 1500 psig and in 250 psig increments to 3000 psig. At 3000 psig the hoop stresses on the

outer radius of the bends of the two LOX inlet elbows were 33,885 psi and 31,001 psi. Both exceeded the

29,200 psi room temperature minimum yield strength of the 321 stainless steel from which the elbows were

made. Also at 3000 psig, the strain rate became nonlinear indicating the elbow had been yielded during the
pressure test. The strain offset corresponded to 4105 psi, and analysis indicated it will not be detrimental to

the performance of the elbow.

The cause of the higher-than-expected stress in the LOX inlet elbows was attributed to thinning of the wall

during the process of bending straight pipe into elbows. Wall thinning was not accounted for in the design of

the injector which required that the elbow be made from schedule 80 pipe.

Since the proof testing showed that the LOX inlet elbows were capable of withstanding over 2524 psig (tt_.._.--

largest LOX inlet pressure in the test matrix) at room temperature and since 321 stainless steel gains considerable
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strength at the cryogenic operating temperatures, the decision was made not to replace the elbows. At liquid

oxygen temperatures, the yield strength of 321 stainless increases to over 50,000 psi, resulting in a safety factor

to yield of nearly 2.0. Therefore, it was decided that the higher-than-expected stresses in the LOX inlet elbows

would not affect the performance or life of the injector with the planned test matrix and that the elbows did

not need to be replaced.

The injector assembly was leak checked both before and after the proof pressure test with helium and no
leaks were found.

Several problems were encountered with instrumentation attached to the faceplate. The thermocouples for

sensingfaceplatemetal temperature and thehypombing forreadingcombustionchamber pressurewere required

tobe brazedtothefaceplate,but to maintaintheLOX compatiblecleancondition,the instrumentationrequired

brazingonto thefaceplatebeforethe faceplatewas installedonto theinjector.Thisrequiredtheinsu'umentation

to be routed through small holes in the fuel cavity behind the faceplate. The small hypotubing and thermocouple

wires (0.062-inch diameter) were broken several times during the initial installation attempts. A modification

was made to the pressure sensing lines to reduce their diameter to 0.040 inch and installation was successfully
accomplished. During the water flow testing, one of the therrnocouple leads was broken, requiring replacement.

Reassembly was accomplished without incident and the leads were secured to the outside of the fuel manifold

to lessen the chance of breakage at the entrance to the injector.

FE608822

Figure 2.1.3-17. Subscale Injector Assembly _ LOX Side Exploded View
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_ E6OB&

Figure 2.1.3-1& Subscale Injector Assembly _ LOX Side Closeup

_,r 2-34



Pratt & Whitney FR-23116

FEe_I_'3

Figure 2.1.3-19. Subscale Injector Assembly _ Fuel Side Exploded View
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Figure 2.1.3-20. Subscale Injector Assembly m Fuel Side Closeup
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Figure 2.1.3-21. Subscale Injector Assembly _ Fuel Side Closeup With Faceplate
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FE608175

Figure 2.1.3-22. Typical Stresscoat Crack Pattern (Inside Radius of Elbow)

2.1.3.6 Water Flow Testing

Both the fuel and LOX circuits of the injector were water flow tested to verify the proper effective flow areas

(Acd). The LOX circuit was flowed both with and without flow metering plugs installed. Flow testing of the

LOX side with the flow metering plugs installed yielded an average Acd of 0.8346 in2, which is within 2 percent

of the predicted nominal. This is well within the desired 5 percent of nominal. The flow test of the LOX circuit

without the metering plugs installed yielded an average Acd of 1.0052 in 2. The Acd average was slightly below

the desired 5 percent of nominal, but it was within 6 percent of nominal. It was decided that tiffs flow would

be acceptable since it indicated a slightly lower area which would result in a higher differential pressure which

would be conservative for testing. Figure 2.1.3-23 shows the injector mounted on the water flow test stand while

Figur e 2.1.3-24 shows the water flow spray pattern of the LOX circuit. As seen in Figure 2.1.3-24, the LOX flow

pattern was uniform and the scarfed outer row elements acted to direct the spray away from the wall as intended.
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Water flow testing of the fuel circuit revealed art Acd average of 0.9868 in2, 16 percent above the predicted

nominal. Visual observation of the flow revealed leakage around the faceplate edge. A new seal was designed

to provide additional crush. The seal was fabricated and installed but water flow still showed leakage around

the faceplate edge. The edge of the porous faceplate was sealed with plasma spray and machined to provide a

better sealing surface. Water flow showed that the edge of the plate had no leakage, however, there appeared to
be areas of high flow through the porous plate and the Acd average was still 12.6 percent above that predicted.

The film cooling orifices were removed and blanks were installed to provide a better view of the actual flow

at the edge of the plate. The installation of the blanks allowed a better view of the interior of the faceplate where

some areas of high flow were also observed. Flow showed that there was leakage at the film cooling orifices

and flow was also seen around the edge of the facenuts.

A portion of the porous plate used to make the faceplate was flow tested with air to confirm that it had the

correct porosity. The test showed that the porosity was within the design requirements.

Although the effective area was in excess of that planned, it was decided that it was acceptable for testing,

and the injector was delivered to NASA-MSFC.

Fixtures for flow testing faceplate samples were fabricated. These samples included sections of the faceplate,

facenuts, fuel sleeves, and film cooling orifices, and were used to investigate possible causes of the excessive

fuel circuit flow. Items investigated include leakage under the facenuts, leakage under the film cooling orifices,
leakage around the igniter sleeve, and transverse leakage through the porous plate at the film cooling and facenut
counterbores.

The samples confirmed that there was leakage around both the facenuts and film cooling orifices. Although

there was transverse flow through the porous faceplate which exited at the counterbores for the facenuts and

film cooling orifices, this flow was small and insignificant (Transverse flow exiting at the faceplate OD and seal

groove was stopped by the plasma spray coating applied to those areas). The samples also showed that the

most effective ways to restrict leakage around the facenuts was to increase the facenut torque. A Teflon seal
placed on the back of the faceplate between the faceplate and the fuel sleeve was evaluated but not used due to

a consideration of risk associated with having the faceplate "float" on the seals, and due to possible dislodging

of seal pieces that could block the fuel flow. Also, the additional reduction in leakage over the higher facenut

torque was small. Reducing the leakage around the film cooling orifices was considered more difficult, and no

easily incorporated change was found. Thus, it was decided to replace the faceplate with the spare, which had

simple film cooling holes rather than replaceable film cooling orifices. While eliminating the capability to vary

the film cooling flow, this change did incorporate direct film cooling in which the fuel was directed to impinge

on the chamber wall rather than being added outboard of the outer row element for reducing mixture ratio only.

The spare injector faccplate was installed onto the injector at MSFC. While the injector was dismounted,

machining was done to provide clearance for installation of the combustion chamber dynamic pressure probes

and to provide relief holes adjacent to the faceplate to facilitate faceplate removal if required again. Following

this rework, the injector was cleaned for LOX service and reinstalled onto the combustion chamber. To secure
the combustion chamber to the test stand while the injector was dismounted, a spacer was fabricated using the

injector simulator plate that had been fabricated by P&W for use in welding the LOX inlet lines.
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FE36T721F2/3

Figure 2.1.3-23. Subscale Injector Mounted on Water Flow Stand
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2.1.3.7 Outer Row Oxidizer Element Crack

Upon receipt of the injector at MSFC, a crack was noticed in the scarfed tip of one of the outer row---

oxidizer elements. As shown in Figure 2.1.3-25, a piece was missing from the tip, and a band of pitting and
discoloration surrounded the crack. The crack was not seen before shipment of the injector from P&W. Close

visual examination of the injector at MSFC showed that no other elements had any evidence of similar distress.

To allow testing to proceed, the damaged element tip was ground and milled flush with the injector face

to avoid the risk of the crack propagating further down the element. This operation removed nearly all of the

damaged area. Since the scarf was cut off, it was decided to plug the LOX element to prevent any oxidizer flow

and avoid the possible risk of impinging LOX onto the combustor wall. The scarf feature is intended to prevent

such impingement. A copper plug was installed to fill the entire internal diameter of the LOX element. This
was threaded into the element in the same manner as the plugs used to control the tangential entry slot length

and sealed with LOX compatible ceramic compound (Sauereisen cement) to completely prevent any LOX flow.

Verification of the capability of this compound to withstand the thermal cycles was done on a sample element,

which was prepared in the same manner as the injector element and dipped into liquid nitrogen several times.

No evidence of cracking or dislodging of the compound was seen. The plugged element caused no problems

during testing of the injector. The damaged tip was returned to P&W for analysis.

Analysis at P&W showed that the crack occurred in an area of material that had apparently melted and

recast. A cross section of this area is shown in Figure 2.1.3-26. The remelt area extended from the element ID,

at one point, all the way through the 0.020-inch wall. This area of recast was soft and porous and may have

eroded and cracked during the water flow testing of the injector. The missing piece of the element may have

broken loose during shipment of the injector, since this was not detected at P&W before shipment.

The origin of the remeit area remains unknown. Although a shallow recast layer is typical of the EDI_

process used to make the interpropellam plate with integral elements, the recast area in the damaged tip was-

in no way typical of an EDM recast layer. Typical EDM recast areas were 0.001 to 0.003 inch. This remelt

area went completely through the 0.020-inch thick wall. In fact, this recast area does not appear to be caused

by an electric arc, which tends to remove material, leaving craters with a thin recast layer rather than a thick
area of melted material.

During manufacture of this part, the recast layer was removed from the outside of the element by hollow

milling, and from the inside by reaming. The recast was removed from all other areas by chemical milling.

Attempts to duplicate the remelt layer with EDM were performed at P&W on sample elements, but similar effects

could not be duplicated. Thus, it was concluded that the damage was not a result of the intended manufacturing

process, nor could it be duplicated by intentionally departing from good manufacturing procedures for making

the integal element interpropellant plate.

There were no other steps in the manufacturing process that were suspect as being possible causes for the

remelt area. The subcontractor who made this part was contacted regarding any departure from the planned

processing that might have taken place and none was identified.

Although the cause of the damage remains unknown, it appeared to be isolated to this one element. Following

the subscale testing, a thorough inspection of the interpr0pellant plate will be performed, including fluorescent

penetrant inspection (FPI). FPl was accomplished at P&W on the interpropellant plate during the manufacturing

process, and on an interpropellam plate sample as part of this investigation, and no cracks were found on

either piece.

As a result of the above investigations, there is no concern that the problem found on this one element w_` .

due to the manufacturing process for an integral element interpropellant plate.
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After the damaged element was plugged, the injector was remounted onto the combustion chamber on

TSll6 test stand for testing of the subscale rig.

Intlrsecllng
Crack-Through

Faceplate
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Removed) _
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Figure 2.1.3-25. Cracked Outer Row Oxidizer Element
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Figure 2.1.3-26. Cross-Section of Element Wall Showing Area of Recast
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2.2 IGNITER

2.2.1 Hypergolic Igniter Design

At the 23 May, 1989 pro_am review, there was concern raised about the torch igniter operation and
durability of the spark plug. This was based on NASA experience with other torch ignition systems and on the

start sequence which was to be used for the subscale testing. As a result of these discussions, P&W produced a

backup designfora hypergolicigniterusinga Iriethylaluminurnand lriethylborane('IT.A/TEB)mixture.

The designof the hypergolicigniterisshown inFigure2.2.I-I.This designislittlemore thana pieceof

copper in theshape of thetorchigniterwith a straightholethroughtotheinjectorfaceto spraytheTEAfTEB

out intothe combustion chamber. The flangeand tube body isa singlepiece of AMS4602 OFHC copper.

Thermal analysisof thefacedeterminedthatno activecoolingor thermalbarriercoatingwould be requiredfor

chamber firingtestsup to 10 secondsdurationattheratedpower level(RPL) testcondition.The body outside

diameteristaperedto permitunrestrictedthermalgrowth.Externaldimensionsare identicaltothe torchigniter

facilitatingdirectreplacement.A number 6 AN flaredtubefittingwas used toconnectto thestandTEAfTEB

supply. A TEA/FEB flowrateof 0.5 to 1.0pps was specifiedsincethisigniterwas similarto an igniterused

for 40K testingat MarshallSpace Right Center(MSFC).

When thetorchigniterexperiencedsevereproblemsand was abandoned,thedecisionwas made toincorporate

the hypergolicigniterintothe subscaleinjectordesign.The igniterwas conventionallymachined at a vendor

from a singlepiece of OHFC copper.
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Figure 2.2.1-1. Subscale Hypergolic Igniter

2.2.2 Torch Igniter Design History

The torch igniter was designed to provide the start flame to the main combustion chamber (MCC) during
engine start-up. The GOX flow was to be metered by an orifice at the inlet and injected into the igniter

combustion chamber (ICC) through an inlet tube. Fuel flow was to be split at the inlet into two flowpaths, each

metered by an orifice. One path has the fuel cooling the ICC wall, and the other path was for injecting fuel

annularly around the GOX into the ICC.

An additiomd feature of the igniter was that as the hot gas leaves the ICC barrel and discharges into the

MCC, the coolant bypass fuel impinges annulaxly around it. This initially causes a conically shaped flame front
to form in the MCC. As the gas streams mix, the conical shape degenerates into a randomly shaped flame

front This fuel rich flame from combined with an oxidizer rich environment during rig startup would ensure

a positive ignition source in the MCC.

The torch igniter was initially designed to operate with gaseous oxygen and gaseous methane. NASA/MSFC

had indicated a preference for liquid oxygen, and P&W evaluated the impact of substituting liquid for gaseous

oxygen on the design and operating characteristics of the torch igniter. Simply substituting a smaller upstleam

orifice in the LOX line resulted in an orifice size requirement of 0.003 in. diameter, which would have beer

unacceptably small (susceptible to blockage). During the design review, NASA agreed to provide gaseou.

oxygen to the igniter as originally designed.

2--46



Pratt & Whitney FR-23116

The crosssectionof theinitialigniterdesignisshown inFigure2.2.2-I.Oxygen entersthrougha centrally

locatedremovable orificeand is injectedintothe torchcombustion chamber. The ignitercontainstwo fucl

plenums which are fed from one supply.Removable orificescontrolthe flowto each of theseplenums. One

feedsthegaseousmethane tothe ignitionchamber throughan annuluslocatedmound the LOX inlettube.The

otherplenum feedsthecoolantannulusthroughtwelvecrossoverslots.This flow isdischargedintothe main

combustionchamber. Tbe propellantswithintheignitionchamber areignitedby an clecu-icspark plug.

The flame front will be 0.500 inch from the oxidizer inlet. This allows the flange Haynes 230 material to

extend that far from the inlet where R is brazed to the OHFC ignition chamber wall. This joint region also serves

as a plenum to effect uniform flow of coolant _,ough the annulus around the ignition chamber. The remainder of

pieces will also be Haynes 230 because of its excellent brazeability and for thcmml expansion compatibility.

When theigniterpurge,starting,and steadyflowshad been defined,itbecame necessary,as a resultofthe

flowsrequired,to move the startingflow orificesofftheigniteritselfto allow introductionof the steady-state

coolantflowsdownstream of the startorifices.The configurationforigniterorificesisshown schematicallyin

Figure 2.2.2-2. This system will allow setting each flow independendy without relying on internal metering and

will permit using the same ignition system for both CH4 and H2 testing by changing these external orifices.

The energy requirements for the spark igniter were determined to be 25 millijoules at a rate of 50 sparks/sec.
The requirements were determined from minimum spark ignition energies for methane and oxygen reported in

,'Combustion Flames and Explosions of Gases," Lewis and yon Elbc, Academic Press, Inc., 1961.

Because of limited space on the igniter, the spark plugs had to be smaller than any other spark plugs in this

energy range had ever been made before. The spark plug supplier had to develope a design and demonstrate in

their laboratory that such a small diameter (0.125 inch) can be made to withstand the spark energy.

Instrumentation to detect ignition included two thcrmocouples routed along the Chamber cooling annulus

and installed at the tip of the igniter chamber to detect the copper liner temperature at the igniter discharge to
the main chamber. In addition, a high response gas thermocouple was to be installed in the igniter combustion

chamber dome. Ignition would be detected by the gas thcrmocouplc with verification of hot gas discharge into

the main chamber with the skin themm_ouples.

The high-response thermocouple to be used to detect ignition of the torch igniter was an eroding tip

thcrmocouple was manufactured by NANMAC corporation and is shown in Figure 2.2.2-3. The probe was to be
installed in the dome of the torch igniter with an insertion depth into the torch combustion chamber of 0.100 inch.

The probe used a platinum and rhodium ribbon encased in a zirconium oxide shell and is shown schematically

in Figure 2.2.2-4. With this probe the junction is continuously formed as the tip erodes. The response was

expected to be less than 0.100 second. At the 27 October 1989 program review, concerns were raised by NASA

about the reliability of the eroding tip thermocouple to be used in the torch igniter. In previous testing at MSFC,

this type of probe demonstrated rapid tip erosion during unstable subcridcal combustion of hydrogen-oxygen. To

mitigate risk a platinum-rhodium probe similar to that used successfully during recent testing at P&W under the
Alternate Turbopump Development program was designed and fabricated.
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Figure 2.2.2-1. Torch Igniter Cross-Section
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Figure 2.2.2-4. Torch Igniter Thermocouple

2.2.3 Torch Igniter Fabrication History

The spark plug, excitor, and high tension lead were purchased from vendors. The spark plug is shown firing

in Figure 2.2.3-1 during a test of the system.

During fabrication of the torch igniter, several drill bits were broken during installation of the fuel coolant

supply passages. Subsequent EDM removal of the bits enlarged the exits of three of the passages beyond a

usable condition. A weld repair was made, and the passages were redrilled, returning the igniter to drawing

specifications. Radiographic inspection revealed incomplete coverage in the joints between the igniter outer barrel

and flange and igniter inner barrel and flange, however, it was determined that sufficient braze material existed

to satisfy design requirements. The igniter was accepted, final machining was accomplished and the igniter was
delivered to P&W. The completed igniter is shown in Figure 2.2.3-2.

During preparation for testing the igniter, it was discovered that one of the two baxrel therrnocouples (T/C)
was broken at the housing junction. Due to the assembly configuration, this T/C could not be replaced. Trial

fit-up with the injector assembly revealed an interference between the injector igniter sleeve and the remaining
barrel T/C on the igniter, preventing assembly. Therefore, it was decided that following the testing, which would

calibrate the barrel T/C to the dome T/C, the remaining barrel TIC would be removed from the igniter.

Delay in testing of the torch igniter at P&W due to SSME ATD test activity resulted in a mutual agreement
with NASA to move the hot firing to MSFC TS116 stand. Before shipment of the igniter assembly to MSFC,
the igniter was disassembled (supply fittings and orifices removed) for installation of replacement T/Cs on the
outer surface of the copper hot wall. Only one of the two was operational and if it failed during checkout

tests, the only indication of proper operation would be the spark dome gas T/C. Thus it was decided to remove
the existing T/Cs and install larger diameter TICs more capable of withstanding the handling during installation
and checkout testing. Having two reliable T/Cs would allow correlation with the spark dome T/C before their
removal for the igniter installation into the injector.

A port to provide a hydrogen purge to the injector sleeve into which the igniter is installed was also added

to prevent freezing of combustion gases which would have filled this area during operation. This purge did not

require additional actuation valves or sequencing, but was supplied directly from the hydrogen manifold in the

injector body through an external line.
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The rework was completed and the igniter and all ancillary parts were cleaned for LOX service, then

assembled. All components required for hot firing were shipped with the igniter assembly to MSFC on 22 Ma_
1990 and were received the following day.

The torch igniter was installed on "IS 116 at MSFC for cold flow and hot fire testing. A cold flow test was

accomplished on 9 July 1990. Review of the data showed that there was significant pressure buildup in both
fuel supply tee fittings indicating a restriction in the flow downstream of the metering orifices. The fuel inlet

lines were removed from the igniter and diagnostic flows were performed. These tests showed that there was
very little flow through the igniter fuel injector circuit and no flow through the fuel coolant circuiL The igniter

was removed from the test stand and returned to P&W for investigation.

The igniterwas machined to expose the internalpassageswhich suppliedfuelforcoolingand injection.

Inspectionwith a borescope showed incompletemachining of the fuelcoolantpassageand blockage of the

injectorpassage. These restrictionswere removed and flowwas restoredfor both circuits.A cold flow was

performed to verifyproperperformanceand itwas discoveredthattherewas crosscircuitflow between the

injectionand coolantcircuits.Inspectionshowed an intersectionbetween one of the passagesthatfeedsthe

coolingannulusand thefuelinjectorsupplypassage.A sleevewas installedintotheinjectorsupplypassageto

correctthisproblem. Thisrepairwas partiallysuccessfuland thecrosscircuitleakagewas significantlyreduced.

Furtherinvestigationshowed thata drawing errorhad a11owedthisintersectionand anotherintersectionof a

coolingsupplypassagewiththedome T/C hole.In addition,X-raysshowed thatblockageofthecoolantannulus

had occurredduringinstallationof theT/Cs thathad been intendedformeasuringthehotwalltemperature.Since

repairwould requiredisassemblyof theigniterto correcttheseproblems,and thiscouldnotbe accomplishedir

time to permit hot firing before the thrust chamber arrival at MSFC, it was decided to use the backup hypergolic _.
igniter for thrust chamber testing.

The torch igniter was placed in stores with the possibility of being reworked for use on the large-scale

injector with removal and replacement of the fuel coolant jacket and the copper liner to accommodate the longer

installation length. After obtaining quotes for the repair of the torch igniter, and reviewing the reliability of the

hypergolic igniter during the subscale testing, it was decided to use a hypergolic igniter for the full-scale testing.
Therefore, the torch igniter was left in stores without repair and remains nonfunctional.
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FE_IO-4

Figure 2.2.3-1. Torch Igniter Spark Plug w Shown Firing

F_'773

Figure 2.2.3-2. Completed Torch lgniter
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2.3 CALORIMETER COMBUSTION CHAMBER

2.3.1 Calorimeter Combustion Chamber Design

2.3.1.1 Mechanical Design

The mechanical designof the chamber provided two basicfunctionsduringthisprogram. Itservedas

the chamber for testingthe subscaleinjectortodetermineperformanceand combustionstabilization,and isa

calorimeterto providedatafor analysisof the combustionchamber heatabsorption.Figure2.3.1-Ishows the

subscalecalorimetercombustion chamber. As shown, the chamber incorporates144 circumferentialpassages

forthe watercoolant.The coolantisintroducedtoeightmanifoldsfrom where itsplitstonineindividualflow

circuits(72 circuitstotalfor the combustor).This splitprovidesmetered flowto two passageseach in allbut

four locations.The flow toeach pairof passagesiscontrolledby an orificein thedischargeof each of the 72

coolantcircuits.The dischargelineislocated180 degreesfrom thewater inleLThe coolantcircuitinletsate

clockedat22.5 degreesas theyprogressaxiallydown thechamber lengthtopermiteaseof interfaceplumbing

installation as well as to minimize circumferential temperature gradients in the chamber.

The coolant passages axe machined circumferentially around the chamber to allow axial sectioning of the

chamber so that the beat transfer along the length of the combustor can be determined. The chamber liner is

made from NASA Z copper alloy which was forged and contour rolled to a near net shape to establish the
needed material properties and minimize the usage of raw material. The water coolant passages are machined

and closed out by an electroformed nickel structural shell. The coolant lines are made of 321 SST and welded
to the nickel shell.

The calculatedfactorsof safetyforthe combustorarepresentedin Table2.3.1-I.

Table 2.3.1-1. Subscale Combustor Factors of Safe_
i

C o awlido n C ompo nmt S F

Prestart -- Full Coolant Pressure Copper Liner 1.7 Yield

Steady State Copper Liner LCFLimited

Nickel Structure 1.25 Yield

1.5Ultimate

Coolant Lines 2.0 Yield

4.0 Ultimate

Chamber/dfe Pred/cgon."

The copper liner wall of the subscale calorimeter chamber is predicted to have sufficient fatigue life for

completion of all combustor tests without liner wall cracking. Based on the analytically predicted temperature
distributions in the liner and electroformed nickel closeout, a minimum low-cycle fatigue life of 200 cycles
was calculated.

Previous results of NASA LeRC subscale chamber tests(Reference 1) were used to determine the life of

the P&W STBE subscale chamber design. Hot-fire testing of insmmaented subscale combustion chambers at

the NASA Lewis ResearchCenter (NASA-LeRC) has shown significant mid-channel wall thinning and bulging

following repeated cyclic testing. The large temperature difference between the liner hot wall and the thicke,

closeout material is a major cause of high cyclic strain in the liner wall, and therefore, is a prime cause for line,

wall fatigue. The observed cyclic life of each hydrogen cooled chamber was plotted versus the maximum hot
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wall to backside wall temperature difference (T). Figure 2.3.1-2 shows the NASA F,cRC data and also the T
of 1050°R for P&W's water cooled subscalc chamber. The T value is based on an acccl condition, where the

liner hot wall surface quickly reaches stcady-statc temperatures, and the backside wall remains approximately at
cooldown (ambient) temperature. Using this method, a typical liner wall fatigue failure would occur near 500

cycles of testing (assuming equal thcrmal gradients for each cycle). A conventional method for presenting the

low-cycle fatigue (LCF) life characteristics of a given material is to plot strain range (De) as a function of cycles
to failure (NO. Numerous LCF specimen tests arc conducted to represent the material fatigue characteristics at

various strain ranges. The LCF curve for NASA Z is shown in Figure 2.3.1-3(Reference 2). A strain range

of 2.2 percent in the liner wall was analytically prcdictcd using the method described in(Reference 3). Figure

2.3.1-3 shows a typical curve fit through the NASA Z data, and an estimated minimum curve to account for the

data scatter. The predicted strain range of 2.2 pcrccnt yields a minimum LCF life of 200 cycles.

Both methods described above demonstrated that the liner wall was designed to provide sufficient fatigue

life for completion of all scheduled combustor tests with a low risk of liner wall fatigue failure.

Figure 2.3.1-1. Subscale Calorimeter Combustion Chamber Design
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Figure 2.3.1-3. Low-Cycle Fatigue NASA Z

2.3.1.2 Analytical Design

Combustion Performance Analysis:

The combustion performance (T/c,), and stability characteristics were evaluated for the design of the P&W

injector configuration. The subscale injection element dimensions used in this evaluation are given in Table

2.3.1-2. The characteristic velocity efficiency ('/c.) is provided as a function of characteristic length (L*) and

injected LOX drop size in Figure 2.3.1--4. The calculations for characteristic velocity efficiency are based on

a P&W developed Supercritical combustion model, which is iUustrated schematically in Figure 2.3.1-5. The

model is based on analytical characterization of the following combustion related parameters:

• Droplet formation plane

• Droplet size and distribution

• Droplet heating

• Flame front location, including ignition delay effects
• Fraction of reactant burned.

Table 2.3.1-2. Subscale Injection Element Dimensions

LOX Spud ID (in.) 0.272

LOX Spud OD (in.) 0.312

Tangential Slot Width (in.) 0.030

Tangential Slot Length (in.) 0.426

Fuel Gap (in.) 0.020

Number of Elements 62

The drop formation plane for the P&W injector is approximately 0.6 inch from the LOX injector element tip.

This distance was calculated from a P&W developed correlation of atomization plane vs LOX injector pressure

drop which was developed from extensive tangential entry injection element spray testing.
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The droplet size for the injected LOX was calculated from a P&W correlation which gives mass median
diameter (MMD) as a function of geometry and operating conditions, for a tangential entry swirl coaxial injection

element. This correlation was developed from extensive spray analysis of this type of injection element over a

range of element sizes, injection pressure drops, mass flow rates, and test fluids. Figure 2.3.126 gives the LOX

drop diameter distribution in cumulative volume (or mass) for the P&W injector.

Droplet heating is virtually instantaneous per the method of analysis proposed by Wieber(Reference 4). As

shown in Figure 2.3.1-7, for chamber pressures in excess of 2000 psi& the LOX droplet reaches the critical

temperature with virtually no vaporization from the drop before heating to the critical temperature at which the

phase boundary between the drop and surrounding gas disappears.

The ignition delay ring for the P&W injector is 0.5 milliseconds This value was calculated from an ignition

delay time correlation using References5,6, and7. This delay locates the flame front approximately 0.6 inch
from the injector face.

The calculation of combustion efficiency relies upon the model given in Reference8. In this model, the

combustion rate is controlled by diffusion once the liquid droplet reaches critical conditions (i.e., when the droplet

reaches its critical temperature and the combustion process pressure is above the critical pressure of the fluid).

Under these conditions, increasing the pressure increases the density of the diffusing reactants which reduces

the rate of diffusion and therefore reduces the rate of combustion. A grapl_cal representation of this process is
shown in Figure 2.3.1-8, and the experimental verification is given in Figure 2.3. l-9(Reference 9).

An example of the application of the P&W supercritical combustion model can be found in Referencel0.

Combustion Stability Analysis:

The stability characteristics of the P&W injector were evaluated using the Sensitive Tune Lag The-

ory(Reference 11). The evaluation was made using a computer code that P&W obtained from Dr. C. E.

Mitchell of Colorado State University. This code is described in Referencel2. The results of the analysis are

given in Figure 2.3.1-10, and show that the combustion system would be stable at the design operating conditions.

Heat TransferAnalysis:

Subscale Chamber Contour Selection _ Ideally, the subscale chamber geometrical and operational characteristics
should provide an environment that is identical to that of the full-scale chamber in the areas of combustion

efficiency, combustion stability, local heat flux level and distribution to provide data that is directly applicable

to the full-scale engine design. However, this is not possible due to restraints associated with the smaller thrust

and flowrate size of the chamber. For example, certain more significant to evaluate/model parameters such as
L* and the throat entrance contour were retained while others, such as chamber cylindrical length allowed, were

determined from the values selected The proposed contour for the subscale chamber was selected to provide

the same combustion chamber characteristic length, contraction ratio, throat heat flux level and a geometrically

scaled divergent section comparable to that of the full-scale chamber.

Figure 2.3.1-11 depicts the chamber contour and identifies nomenclature. Table 2.3.1-3 summarizes contour

characteristics. The Rc and Rin are approximately equal to those being used in the present analysis under Contract

NAS8-36857. In choosing these, the assumption made is that the hot-side curvature enhancement is unaffected

by throat radius; that is, it follows a flat plate analogy. The limited data available has not shown a dependence on

throat radius. As noted above, retaining L* equivalence the convergent section of the subscale chamber begins

I0 inches downstream of the injector and for full-scale chamber it begins 5.5 inches downstream. An AIAA ....

report(Reference 13) raises the concern of wall impingement versus axial length; however, this is considered
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acceptable since the injector features outer ring injector element scarfing and an outer ring of porous Rigimesh
between the elements and the chamber wall.

Table 2.3.1-3. Calorimeter Subscale Combustion Chamber Contour

InjectorRadius (Rinj) - in. 2.83

Throat Radius(Rs) - in. 0.63

Chamber InletRadiusof Curvature (Rin) - in. 8.6

Throat Radiusof Curvature (Re) - in. 2.50

ContractionRatio 3.00

Chamber Length to Throat - in. 17.0

Chamber Volume - in.3 380

Divergent Section Expansion Ratio 7.0

DivergentSectionLength - in. 4.9

DivergentSection Angle C) - degrees 30

Subscale Chamber Cooling Requirements _ The subscale chamber coolant specified is pure de-ionized water.

The inlet steady state pressure was defined as 4500 psia. Due to the inlet effects of flowing the coolant in the

channel at high velocities needed for cooling, the static pressure in most of the passages will be less than the

critical pressure of water (3206) psia. Therefore, the possibility of boiling in the coolant was analyzed.

The main criteria in designing with boiling is the prevention of burnout. This is a term that covers

all physical occurrences that result in a sharp reduction in the heat transfer coefficient and wall temperature
elevation.Reference 14 recommends the following, which is noted to be a very conservative equation for burnout:

QBO =' 0.101 * (Vel) * (AT=ab)

Where:

QBo is Burnout heat flux in Btu/(in.e-sec)

Vel is coolant velocity in ft/sec
ATtab is the difference between saturation temperature and bulk temperature in degrees R.

Experimental data in the reference shows this equation to be conservative by approximately 30 percent.

Using the design point, chamber contour and a hot wall temperaULre of 1560"R, a predicted heat flux curve

was generated. This curve is presented in Figure 2.3.1-12. By using this generated wall heat flux curve and

local geometry definition (passage width and fillet radius, land width, and hot wall radius), curves of burnout

heat flux for different flowrates and passage heights were generated Figure 2.3.1-13 presents a conservatively

predicted burnout curve at the critical axial position 0.8 inch upstream of the throat.

The combustion chamber consists of circumferential passages through which high pressure water flows to

cool the thin wall forming the chamber wall confirming the high-pressure combustion gas products. Each two to

three passages are parallel flow controlled by a orifice in the manifold which is the coolant water discharge of

these two to three passages. The 4500 psia inlet water is routed unrestricted to each group of several passages,

thus inlet pressure and temperature are constant at each passage inlet.
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In an attempt to minimize axial conduction effects which can lead to experimental data analysis uncertainties

the thrust chamber was analytically divided into as few sections as possible, compatible with minimization o.

axial conduction. This resulted in two sections containing groups of separately manifolded two to three passage

groups The coolant flowrates were selected, compatible with the 250 Ib/sec availability, to result in only two

sections being required.

Using the coolant temperature rise, a mass flow rate was determined for each axial location. The optimum

passage height was then determined from graphs similar to those of Figure 2.3.1-13. A thermal design deck
(D5160) has been modified to model circumferential passages using water as the coolant. The effects due to

passage inlet and curvature are included in the calculations.

The final design criteria imposed is associated with establishing as uniform a hot-wall temperau.e as practical.
If the optimum passage height from the analysis resulted in a wall colder than 1560=R, the passage height increased

until a wail temperature of 15600R was reached. These adjustments were made from manufacturing considerations
and held constant throughout each respective section of the chamber.

Using the finalized geometry, coolant pressure drops and in turn coolant static pressures were determined.
Figure 2.3.1-14 presents chamber inlet and exit static pressures.

At the throat entrance the predicted ratio of burnout heat flux to coolant wall heat flux approaches unity and

hot-wall temperature increases above 1560"R are predicted. However comparison with the experimental data in
Reference 14 shows the actual burnout ratio to he closer to 1.3. This provides a margin approaching 30 percent.

Oxidizer/Fuel ratio (O/F) biasing of the outer row of elements significandy lowers wall heat flux which in-_

turn improves both structural and burnout margin. Table 2.3.1-4 presents experimental data on O/F biasing for

methane fuel as used in the initial rig design. Table 2.3.1-5 presents analytical results using a correlation where

the wall conditions axe adjusted for a lower O/F ratio, but the gaspath radiation is held constant. The analytical

results are in good agreement with the available data. Figure 2.3.1-15 is a wall heat flux profile showing the

effect of O/F biasing. When running methane, the effect at the throat of biasing from a core of 3.57 to a wall

of 2.5 is a reduction in predicted hot-wall temperature from 1620"R to 1400*R. Burnout margin moves from a
1.11 to a 1.50 ratio using the burnout heat flux equation as reported by C. Dexter (Reference 14, Equation 6).

Table 2.3.1-4. O/F Biasing Experimental Data

r., N= Pc 0/1_wau O(FCort q/A
211 1570 3.53 3.52 411.611

31 17_ 2.52 3.58 40.95

Nora: Test No. 28 I;)JA Pc Comction: OJA corr ,= 48.M (._.)u

3.$2 - 2.52 . 29%
'& O/F shiA - 3.52

'& Q/A dm_ - 54.04- 40.9S . 24_54.04

- _.04

Some_. C. It. B_dl_ -- High Pmwurt LOX/N,gund G-- Stqlmt Combw_on

Tecbnol_, 19il4
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Table 2.3.1-5. OIF Biasing Analytical Results

o/r w,J_ o/F co,. q/A
3000 :.sT _.sT "n.1

3000 2.50 3.57 59.1

Note: 3.57 - 2.,5
O/F' shUt - T " 30'_

"n.7 - 59.1
s q/^ 4r.¢ - _ - 24_

Since the subscale combustion chamber was designed to operate at a chamber pressure of 3000 psia with

02/CH4 propellants, heat transfer analyses were performed to determine the chamber pressure limit when testing

with H2/02. A simplified heat transfer analysis was performed where the wall temperature was held at 146(PR

and a heat flux profile was generated. Chamber pressure was increased until there was a match in the highest

heat flux to the design point. This comparison is shown in Figure 2.3.1-16. As shown, the heat flux in the

combustion chamber is higher for the O2/H2 case, thus some of the coolant may have to be diverted to this

section to keep the wall temperature below the design limit. This additional coolant is available in the nozzle

section since the wall is running cooler in that area.

For brevity, and since the thermal models used in these analyses are for the most part mature, industry

accepted standards, detailed description were not interwoven in the text. However, a brief description is provided

as Appendix A to this report.

Design and analysis support for the calorimeter chamber continued during the fabrication of the chamber.

During the machining of a sample chamber throat section, it was found that the coolant passage depths in the

diverging section were deeper than those used in the heat transfer analysis. A heat transfer analysis showed that

with these passages, there would be insufficient coolant available due to the requirement for more coolant in the

deeper passages to maintain the required velocity. Another heat transfer analysis was completed and the passage

heights were revised to reflect this latest analysis. With the more shallow passages, the analysis showed that it was

possible to re balance the flow to require only 245 lbm/sec of the available 250 lbm/sec for a margin of 5 lbrrgsec.

Final flow balancing and orifice selection was accomplished when the coolant passages are flowed at P&W.
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Figure 2.3.1-5. Supercritical Combustion Model
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2.3.2 Calorimeter Combustion Chamber Design History

The initial design of the subscale calorimeter combustion chamber was essentially the same as that of the
final design except for just a couple of significant differences. These differences include an acoustic liner in

the original design as well as a different mounting scheme for the injector mounting flange. A cross-section of
the initial design is shown in Figure 2.3.2-1.

In most locations, the coolant is fed directly from the coolant robes into the pairs of channels as shown in

Figure 2.3.2-1. Due to the proximity of the injector mounting flange to the upper two passages, this configuration
could not be used. In the initial design, an alternate feed path to these channels was to be used as shown in

figure 2.3.2-2. With this configuration, the water is routed through the flange and into a small internal manifold

from where it then enters the coolant channels. The discharge is configured similarly.

The original design of the subscale chamber included an acoustic liner to absorb possible combustion
instabilities. However, after methane was dropped from the program and hydrogen became the fuel, the risk of

instability was low and the acoustic liner was considered to be unnecessary. So as a cost savings, the acoustic
liner was eliminated from the subscale design.

In the initial subscale chamber design, The injector mounting flange was to be fashioned from INCO 625

and electron beam (EB) welded to the nickel closeout. However, the final weld sample trials revealed that a --

strong magnetization occurred when the electron beam was activated, bending the beam off course approximately

0.100 inch away from the intended path. Because of the schedule impact and cost of fabricating more weld

samples to try to correct for the beam deflection, it was decided to revise the attachment configuration of the

flange. The first alternate method for attaching the flange was to thread the two parts together using a butuess
thread. The bum-css thread was selected due to its high axial load-carrying capacity based on the success of
similar designs in previous NASA-MSFC chambers.

Later, after working with the second electroforming vendor, a new flange attachment method was incorporated
in which the flange design was revised from the buttress thread attachment method to an interference fit and

subsequent encapsulation within the structural nickel close, out. A seal between the flange and the chamber would

be created by electrodepositing a layer of copper (0.003 to 0.005 inch thick) onto the flange before installing it

onto the chamber. The interference fit of 0.005 to 0.007 inch diametrical would cause deformation of the copper

to assure a seal for the coolant from circuit to circuit. The external layer of nickel which would encapsulate the

flange would provide the structure for the thrust load and acts as a seal to prevent external coolant leakage. This

new design eliminated a possible leak path past the threads of the previous design that would have required a

sealing braze, allowed machining of several port features into the detail flange ring, and saved time during the
final fabrication by deleting the mining operation to machine the thread into the forward section of the chamber.
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Figure 2,3.2-1. Initial Subscale Combustor Assembly
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Internal Manifold H Ill

Coolant Manifold

Closeout

Figure 2.3.2-2. Forward Passages Coolant Feed

2.3.3 Calorimeter Combustion Chamber Fabrication History

Fabrication of the combustion chamber began with forging of the copper liner material. The copper liner

was fabricated from a cast ingot of NASA Z copper alloy. This NASA Z material was spun forged to provide

the needed material properties and to provide an hourglass shape from which to machine the liner. Two forgings _
were made. One was to be used to fabricate the chamber liner;, the other would be a spare. NASA Z forgings

were also obtained for fabrication samples of the acoustic liner and throat sections. These forgings were made
from the same lot of material as the liner. Numerical control tapes were generated for the contour and coolant

channel machining.

2.3.3.1 Machining Samples

Several trial machining samples were produced to provide confidence that the critical coolant passage and

acoustic aperture liner machining could be done properly. These samples were used to set such machining

parameters as speed and feed and to verify design of the cutters.

The first sample, an aluminum sample of the liner throat was machined to do the initial checkout of the

numerical control (NC) tape. This sample is shown in Figure 2.3.3-1. During inspection of this piece an error
was found in the angle of the external surface of the diverging section. The inspection record also showed that

the channels in this section were cut deeper than originally assumed in the heat transfer analysis as discussed in

the heat transfer section. During machining of this sample it was found that the cutters needed to be modified

to provide additional clearance. During machining, in-process inspection of the contour dimensions and channel

depths were accomplished. An acceptable agreement was found between these dimensions and those found with
a coordinate measurement machine in the inspection area. Therefore, the in-process inspections could then be

used on the other samples and the final part to determine the final depth of cut for the contour and the channels
and to determine the internal contour final cut parameters to avoid a thin wall condition.

Next, an aluminum sample of the full liner was machined and is shown in process in Figure 2.3.3-2. Th¢.

purpose of this sample was to check out the complete NC tape, check all cutters, and further investigate the
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in-process measurement capability. In addition to these, since the tooling for the copper liner was available, this

sample was used to provide tooling trials. During machining it was found that the tooling needed some minor

modifications to provide additional support when turning the outside contour.

A NASA Z sample representing a section of the acoustic liner was machined and sent to a supplier for

installation of the acoustic .apertures. The purpose of the sample was to gain experience in machining of the

NASA Z material and develop techniques for installation and electroforming of the acoustic apertures. Installation

of apertures in a sample of a section of the acoustic liner was completed by a supplier. There were 168 apertures

installed and no problems were encountered in meeting the blueprint dimensional requirements. This sample

is shown in Figure 2.3.3-3.

A NASA Z sample of the liner throat was being machined as the final fabrication sample before committing

the liner. During this machining it was found that the cutters for the contour needed additional modifications to

cut the copper alloy that changes to the speed and feed rate were needed to achieve a satisfactory surface finish.

This sample is shown during machining in Figure 2.3.3-4.
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Figure 2.3.3-1. Aluminum Liner Throat Machining Sample
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q=E297881

Figure 2.3.3-2. Aluminum Liner Machining Sample During Machining
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FE29810_

Figure 2.3.3-3. NASA Z Acoustic Liner Machining Sample
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2.3.3.2 Copper Liner Machining

When the two NASA Z forgings for the combustion chamber were received and one was immediately

released to the P&W shop to start fabrication. The other underwent sonic inspection to accurately determine

the location of an inclusion found during the initial inspection at the vendor. This forging was obtained as a
spare piece for manufacturing risk mitigation.

Machining of the chamber liner proceeded without incident until a chip hung during the installation of

channel number 77. Machining of this liner is shown in Figure 2.3.3-5. This caused some damage to the
adjacent lands. Machining was continued, since it was felt that this damage was not severe and could be cleaned

up to provide acceptable performance. Channel 78 was installed without problem. However, during machining

of channel 79 the culler broke and caused severe land damage. This area was reviewed and it was determined

that it could be repaired by removing the damaged lands, electrodepositing copper and remachining. Machining

of the liner continued following this determination, however, three other areas of land damage occurred due to

inadequate chip removal. An alternate method of machining was developed in which two passes were used to

install a channel rather than a single plunge cut. This method was used to complete the liner machining without
further problems. The damaged lands were removed as shown in Figure 2.3.3--6. P&W began machining the
second liner forging after the second area of damage occurred.

Machining of the second liner forging was completed without incident using the approach demonstrated in

completion of the first liner. In setting up this part, it was necessary to shift the machining center to assure that

an indication found during ultrasonic inspection would be removed. Although it appeared that the indication

would be removed duringmachining withouta shift,a centerlineshiftof 0.015 inchwas includedto provide

margin.The aperturesfortheacousticlinerwere not installedbecausemethane was droppedfrom theprogram

and thusthe acousticlinerwas eliminatedfrom the calorimeterchamber design.Once the machining of the

secondlinerwas complete,the damaged linerwas cut in severalpiecesto be used in samples,and one piece

was used to fabricatethe transitionspoolpiece.
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FE2_849

Figure 2.3.3-5. Machining of the First NASA Z Calorimeter Chamber Liner
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Figure 2.3.3-6. First NASA Z Liner Showing Land Damage
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2.3.3.3 Electroforming

Electroforming trials were conducted to determine the best method to closeout the combustion chamber

coolant passages. The first attempts were made using a wax that contained silver powder. It was thought that
this conductive wax would provide a more reliable and lower cost method to perform the closeout than the

method traditionally used, in which nonconductive wax is used with a silver powder burnished into the wax to

provide a conductive surface. The conductive wax would have eliminated the labor intensive burnishing step
and avoided contamination of the copper surface with the silver powder. Samples were electroformed using this

technique and an acceptable passage was formed; however, the resultant surface finish did not meet the design

requirements. Since the conductive wax has silver suspended, it was not 100 percent conductive at the surface.

When the plating was performed, it appeared that the plating initiated at the particles suspended in the wax and

then bridged from particle to particle. This created a surface roughness which would have been unacceptable
due to the large coolant pressure drop which would result. An additional sample was run using a nonconductive

wax with silver burnished into the surface. This method produced a good passage shape and a surface finish

ranging from 36 to 63 microinches. This was within the design requirement of 64 microinches. This was the
method used to closeout the combustion chamber coolant passages. The combustion chamber is shown with the

coolant passages filled with wax before burnishing with silver in Figure 2.3.3-7.

Bond samples were prepared from blocks of NASA Z to verify adequate strength and quality of the copper-

nickel bond. The earliest samples demonstrated no delamination of the copper-nickel interface when subjected

to chisel testing. A verification sample before liner processing revealed an unacceptable bond due to inadequate

activation techniques. The sample result was later found to be due to contaminated activation solution, however,

the result raised concerns about the bonding ability of the process. Investigation of various activation procedures

resulted in the selection of a phosphoric/sulfuric process similar to the Space Shuttle Main Engine (SSME)

procedure. Figure 2.3.3-8 shows a cross-section of a pressure test sample consisting of a serpentine channel in

NASA Z and electroformed with 0.125 inch of nickel after being subjected to an internal hydrostatic pressure
of 10,000 psi, with no failure of the bond joint. This pressure test subjected the bond and copper rib to 40,000

psi, while the actual liner will see less than 5,600 psi at the worst test condition.

A throat sample to measure cooling channel effective area (ACd) in the critical heat transfer area of the

chamber throat was fabricated and then waterflowed. This sample was made by closing out some of the cooling

passages on the NASA Z liner throat sample with ED-nickel. Ten coolant passages grouped into five flow circuits
were flowed and measured for pressure loss and flow rate, and a system K (K" - +AP/mdot 2) was calculated.

The system losses were acceptable and within the predicted range.

A process was developed with the eleetroformer, in which the coolant passages through the nickel jacket
were formed during the electrodeposit process. Noneonductive plugs were installed into the channels to form

passages through the nickel jacket when the eleetrodeposition was accomplished. These plugs remained in place
until the nickel deposition was complete (0.400 inch thick). The next step was to drill spot faces onto the

chamber into which the coolant tubes would be welded. These spot faces were located using the nonconductive

plugs as a guide. After the spot faces were drilled, the nonconductive plugs were removed exposing the copper

liner and providing access to the channels. This method eliminated the electrodischarge machining (EDM) of

the coolant passages that was originally planned; it was intended not only to save time, but also to eliminate the

risk of EDM damaging the copper liner. This method is illustrated in Figure 2.3.3-9. Figure 2.3.3-10 shows the

chamber with nonconductive plugs installed just before nickel deposition.

The combustion chamber electro-deposit process took about 6 weeks longer than scheduled due to a material

transfer rate of 0.0006 in. per hour, rather than the predicted 0.001 in. per hour. Nodule growth around the

nonconductive pins also slowed the process by requiring frequent removal of the liner from the plating tank to

grind them off. Minor porosity was apparent in the throat region early in the process. This was determined to
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be caused by insufficient surface speed to liberate the hydrogen gas bubbles formed during the process at this

section due to the reduced diameter. Concentrated flushing of the electrolyte in the affected area resolved the

problem. The final thickness at the forward flange end was achieved by shielding of the remainder of the liner,

with the exception of the throat area (buildup lagged behind here due to increased distance from the anode and
a shielding effect from the adjacent liner surface).

Weld samples were fabricated to prepare for the weld of the chamber flange to the closed out liner. Initial

samples consisted of straight bars of INCO 625 (flange material) and NI-200 (simulating the electroformed
nickel) to set the machine parameters, based on depth of weld and material properties. Afterwards, two samples

of electroformed nickel were prepared. The first was an aluminum ring with nickel deposited. This was used
to set up initial weld schedules and verify the depth of the weld heat affected zone. From this weld it was

determined that a chill plug would be required to remove heat from the assembly in order for the weld to solidify

rapidly. A fined plug was machined for use with the next weld sample, which consisted of a section of a NASA

Z liner built up with ED-nickel, dimensionally representative of the actual chamber. The intent of this sample

was to closely duplicate the configuration of the chamber for establishing the final weld schedule and to ensure
minimum distortion of the chamber due to the length (1.5 inch) of the weld as well as minimize heat input into

the weld to protect the NASA Z to electroformed nickel bond.

In January 1990 the chamber completed nickel closeout and was delivered to the supplier for electron beam
(EB) welding of the forward mounting flange. This weld would have consisted of a 1.5-inch deep full penetration

weld to ensure complete sealing of the mating surfaces through which coolant ports will pass.

Final weld sample trials revealed that, although all parts were fully degaussed before welding, a strong
magnetization occurred when the electron beam was activated, bending the beam off course and causing

incomplete fusion of the two surfaces. The beam was deflected approximately 0.100 inch away from the intende(

path. Since further weld samples were required to correct for the beam deflection, and the lead time to produce -

geometrically accurate samples of ED nickel created an unfavorable impact on schedule, it was decided to revise
the attachment configuration of the flange by threading the two parts together. A bum'ess thread was selected due

to its high axial load-carrying capacit) based on the success of similar designs in prior NASA-MSFC chambers.

The chamber was delivered to P&W for modification, and fabrication of a new flange ring incorporating the
thread was also started.

Upon receipt at P&W, the OD contour was machined to remove the nickel nodules which occur during
electroforming and to provide a datum for installing the coolant tube spoffaces, followed by machining of the

threaded portion for the flange. During the contour machining, delaminafion of nickel from the nickel substrate
occurred in the throat region of the chamber. The thickness of the nickel in the throat was reduced to 0.152

inch (B/P requirement is 0.400 inch) before all evidence of delamination was removed. A structural evaluation

was made to determine the strength capability of the resultant nickel shell. The chamber static pressure profile

and the channel coolant pressure were used to calculate the maximum stresses in the nickel jacket over the

length of the liner, along with the thickness required to maintain a factor of safety-to-yield of 1.2 or higher

(Figures 2.3.3-II and 2.3.3-12).

The thinnest nickel closeout remaining after final machining maintained a factor of safety greater than 4.0.

Consideration was given to the heat-affected zone of the robe welds which locally reduces the nickel yield

strength. Weld samples were metallurgically evaluated for depth of penetration to support the safety calculations.

Before continuing the scheduled machining operations, a hydrostatic proof test was conducted on selected

Channels to veri_ that all delaminated nickel had been removed and that the nickel-to-copper bond was sound

Four channels were tested, three in the throat region and one in the cylindrical section near the injector face. _

These were selected based upon remaining nickel thickness and maximum stresses. The channel in the cylindrical
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section held 5400 psig (1.2 factor of safety over 4500 psig test condition) with no leakage. One of the throat

channels also held the required pressure, but leaked slightly over into adjacent channels. The remaining two

throat channels could not achieve full pressurization due to the volume of the leakage at adjacent channels above

the pressure test system flow capability. Before-and-after helium leak tests revealed increased leakage following

the proof test for the three throat channels. Visual observation indicated water leaking between nickel layers at
the adjacent channel ports. Subsequent sonic inspection revealed areas of dis-bond within the nickel layer.

Three options were reviewed at this point: (1) continue processing, (2) remove the nickel in the throat area

and replate at the original supplier (at no cost), or (3) remove all of the nickel and replate at a supplier with

direct rocket thrust chamber closeout experience. Option 1 was dismissed as high technical risk due to the

possibility of separating nickel layers under test conditions, exposing large surface areas to 4500 psig coolant
water, with the resultant nickel layer thicknesses unknown. Option 2 was determined to be a moderate technical

and schedule risk due to the still unknown condition of the remaining nickel-copper bond, and the development

nature of the replating process at the original supplier. Partial nickel removal did not shorten the recovery

period due to remaining processing requirements to ensure acceptability. Option 3 was selected as the lowest

technical risk approach since it has the least remaining unknowns, and uses an experienced supplier with a

proven closeout process.

Removal of the nickel was achieved by machining to within 0.010 inch of the original copper contour,

followed by removal of the final layer using a commercially available stripping solution. The delaminated nickel

layers revealed by the sonic inspection were confirmed as the machining progressed. Occasional unbonded

regions were also revealed in the cylindrical section and at the conical exit area, reinforcing the decision to

remove all of the nickel. The nickel-to-copper bond remained intact as the original contour was approached,
mandating the use of the stripping solution to remove the final layer. A NASA Z/ED-nickel sample was run

before the part to establish material removal rates and verify that no detrimental attack of the NASA Z occurred.

The nickel delaminations appear to have been caused by a multitude of conditions, depending on where

they occurred on the liner. The throat area was a known low current density area (indicated by the slow rate

of deposition during the plating cycle compared to the other areas) which could have resulted in insufficient

eleca'ochemical activation of each successive layer of nickel before re-immersion in the nickel solution. This low

current density was due to the shielding effect of the surrounding larger diameters of the conical and cylindrical

sections. Further aggravating the problem were the noncondactive plugs used to form the coolant ports, which
in the throat section were very close to each other, again shielding the liner surface from full activation current.

The areas on the cylindrical and conical sections were likely caused by contamination of the surface by activation

solutions which were retained in the maskam foam used at either end of the part. The alternate supplier selected

for redeposition of nickel used a refined process that concentrates current activation at the throat area, while
shielding high density regions to prevent excessive buildup of nickel. Current density was also increased when

using plugs, and the nickel was periodically machined back until a uniform surface is achieved from which to

continue the plating. Not only does this remove any uneven nodular nickel growth which affects current density,

but it also interrupts the enlarging grain growth and reduces residual stresses.

EF Nickel, Corona CA. was chosen as the replacement supplier due to their experience base in closeout

of rocket chambers. Their chief metallurgist, Glenn Malone, had previous experience with copper chambers for

NASA Lewis Research Center, and is currently engaged in contracts with NASA and Aerojet. They also had

established procedures for the process techniques required; i.e., waxing the channels, silver burnishing, use of

nonconductive plugs to form ports, etc. They were selected as the most capable of the vendors available to

deliver a quality product without the development problems that occurred previously, and were able to meet

the accelerated schedule requirements.

Working with the new electroforming vendor, the subscale thrust chamber forward flange design was revised
from the buttress thread attachment method to an interference fit and subsequent encapsulation within the
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structural nickel closeout. A seal between the flange and the chamber would be created by elecu'odepositing a

layer of copper (0.003 to 0.005 inch thick) onto the flange before installing it onto the chamber. The interference

fit of 0.005 to 0.007 inch diametrical would cause deformation of the copper to ensure a seal for the coolant from

circuit to circuit. The external layer of nickel which would encapsulate the flange would provide the structure for

the thrust load and acts as a seal to prevent external coolant leakage. This new design eliminated a possible leak
path past the threads of the previous design that would have required a sealing braze. The change also allowed

machining of several port features into the detail flange ring, deleted the turning operation to machine the thread

into the forward section of the chamber after arrival at P&W, and saved time during the final fabrication.

Following removal of the initial electroformed nickel closeout _ chamber was prepared (i.e., channels were
filled with wax and burnished with silver, then immersed in the plating solution at El= Nickel in Corona, CA).

Process techniques that differed from the prior electroforming company included nickel flash (0.002 to 0.005

inch) of the copper lands before wax filling and silver burnishing of the channels to prevent copper bleed-out

contamination during activation, use of an activation solution tailored to nickel exclusively, and orientation of
the liner horizontally to allow in-the-tank inspection during the eleea'oforming process (Figure 2.3.3-13). In

addition, individual plastic tabs were injection molded to provide the form needed to create the coolant passages
through the nickel (Figure 2.3.3-14). These were inserted into the coolant passages following installation of

the wax filler and burnishing with silver. The use of individual tabs was recommended rather than using an

integral pair, as was done the first time, to allow for flushing of the plating solution between each channel. It is
suspected that during the first electrodeposit attempt the solution stagnated at the tab pair, locally starving part

of the required nickel and mating depressions at each coolant port.

The primary technique that provides for a strong, reliable bond between subsequent nickel layers is the
machining of the liner contour before reactivation. This interrupts the nickel grain growth and prevents large

grain formation improving material properties while restoring the original contour to the chamber. In discussion, ¢

with _e current electroformer, it was indicated that one possible mason that we had previously experiencet._

nickel delamination was the interim grinding of the nickel rather than machining, and because many of the

abrasive grinding disks use silicon binders and the silicon was not removed with normal activation procedures,

the surface was contaminated preventing a good bond.

Installation of the forward flange as discussed above was accomplished without difficulty, followed by the

final nickel closeout of the liner and concurrent encapsulation of the flange (Figure 2.3.3-15). After completion

of the eleclroforming, the chamber was shipped back to P&W.

F_14

Figure 2.3.3-7. Chamber Liner n Waxed and Prepared for Silver and Plugs
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NJ - Cu Bond

Elongatecl Rib

FD3GaSOB

Figure 2.3.3-8. Electroformed Nickel to NASA Z Bond Sample
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STEP 1_

Grooves Filled With Wax and
Bumished With Silver

STEP 2

NASA-Z Liner

Lexan Plug Installed to Form
Inlet/Outlet Ports

STEP 3

NASA-Z Uner

Nickel Plating Closeout Bonds

to Lands of Copper Liner

Figure 2.3.3-9.

STEP4

/Channel Flow

Plug Removed, Counterbored for Tube,
Wax Removed Leaving Open Channels

and Inlet/Outlet Ports

Nickel Deposition Process
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FD368815

Figure 2.3.3-10. Chamber Liner Prepared for Nickel Deposition
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Figure 2.3.3-11. Nickel Stresses Due to Chamber Pressure and Coolant Pressure
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Nickel
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Figure 2.3.3-12. Nickel (59,300 Y.S.) Thickness Required for Calorimeter

FCl14(_0

Figure 2.3.3-13. Subscale Chamber With Wax-Filled Grooves Mounted in EF FixIure
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FCl14668

Figure 2.3.3-14. Subscale Chamber With Nickel Jacket and Port Tabs Installed

Figure 2.3.3-15. Subscale Chamber With Mounting Flange Installed

FC 114670
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2.3.3.4 Final Machining and Assembly

Machining of the chamber at P&W commenced with taming of the OD contour (Figure 2.3.3-16) followed

by spot-facing of all inlet and outlet ports to accept the tubes. An interim proof test was then conducted with
5000 psig water to check the forward flange ports 1 through 5.

Proof testingof the forwardflangecoolingportsfollowinginitialmachiningrevealedan internalleakpath

between ports3 through6. The volume of the leakwas such thatat 5000 psigthe water escaped as a mist

from port6, and as a slow drip(approximatelyone drop per second)out of ports3, 4 and 5. Since port6

did not intersectthe flange-to-chamberinterface,itwas concludedthata minute leakpathconnecteditwith

adjacentchannels.Based upon the low flowrate,themost probablecause was an axialscratchacrossthe copper

landswhich was wax-filledduringtheplatingprocess.Since thepressuredifferentialacrossadjacentchannels

was minimal at operatingconditions(i.e.,allchannelshad 4500 psig supply),therewould be no significant
crossflow between these channels.

To seal any possible leakage between ports 1 through 5 at the flange-to-chamber interface due to operating

stresses and pressures, both inlets and outlets of these ports were counterbored and tapped to receive threaded tubes
with O-rings at the ends. The counterbores extend past the interface into the structural nickel jacket underneath,

where the teflon O-ring seals the leak path around the end of the threaded tube. Before incorporation, a sample

plate with a simulated interface was counterbored and assembled as described, then subjected to a 5000 psia

hydrostatic proof test. Combinations of teflon O-rings with and without teflon tape on the threads were tested,

with both performing flawlessly. The combination of O-ring and teflon tape was selected and incorporated into

the chamber assembly (Figure 2.3.3-17).

Upon receipt of a small right-angle borescope, the coolant passages were inspected for blockage. At thi.,

time, all outlet tubes had been installed. Borescope inspection revealed blockage of all passages to varying--

degrees at the port entrances. The blockage was nickel flash from the electroforming process that formed in the

small voids between the plugs used to form the ports and the adjacent wax (Figure 2.3.3-18). Several methods

of removing the flash were investigated. Due to the narrow width of the channels and the chips resulting from
a cutter, machining the slots larger was dropped from consideration. Abrasive media flow, or Extrude Hone TM,

was attempted on port 72, the last port at the nozzle opening. Sufficient media flow and pressure could not be

achieved to remove the nickel flash without simultaneously removing an unacceptable thickness of surrounding

copper in the channel. Therefore, EDM was selected as the lowest risk approach to remove the blockage by
enlarging the port opening. For this process, all previously installed outlet robes had to be removed. These
were cut off and trimmed for muse.

FollowingEDM removal of thenickelflash,a waterflowcalibrationwas performed on allports.Each slot

within a port was separately calibrated to ensure equal flow split. Results were as predicted in the critical heat

flux area of the converging section (Figure 2.3.3-19). Although the other areas did not flow as predicted, analysis

shows that orifice sizing will provide flow to achieve the required heat flux into the coolant water. Initial orifice
sizes were selected to achieve the required flow rates in each port. Slot-to-slot variation within each port was

less than three percent in the worst case.

The fabrication of the chamber coolant supply and discharge tubes was done in parallel with the chamber

fabrication. The tubes and manifolds were manufactured as subassemblies, which included the brazing of ferrules
and nuts to tubes. The robe subassemblies were then welded to the combustion chamber.

During producibility discussions with fabrication research, planning, and shop personnel concerning thr

welding of the tubes and manifolds, it was suggested that the manifolds be split axially to enhance welding to the

inlet tubes. Following analysis of stresses across the resultant welds needed to rejoin the manifolds, the design
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was revised to incorporate this suggestion. Welding in this manner allowed optimization of the weld sequencing

and reduced the fabrication time required for these operations.

After the welding operations to install the inlet tubes, the outlet tubes, and the manifolds (over 240 separate

welds) (Figure 2.3.3--20), the final proof test at 5400 psig of all channels and plumbing simultaneously was

accomplished with no leakage. The chamber was cycled ten times from 0 psig to 5400 psig without incident.

Final machining of the chamber forward mounting flange and overall length followed completion of the

proof test.

The chamber was cleaned, including the copper channels, by flushing with a copper brite dip for 20

seconds, followed by water rinsing; then final inspection was completed. Figures 2.3.3-21 and 2.3.3-22 show

the completed combustion chamber. The chamber was then assembled to the injector for a fit check, successfully

leak checked with 50 psi helium, and disassembled. Shipment to NASA was made on July 26, 1990.
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Figure 2.3.3-16.

i
Subscale Chamber Following External Contour Machining
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Figure 2.3.3-17. Flange-Chamber Interface -- Current and Previous Designs
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Figure 2.3.3-18. Nickel Flash at Port Entrances
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Figure 2.3.3-19. Subscale Chamber Water Flow Results

2-94



Pratt & Whitney FR-23116

!

:=
r_

I

°_

2-95



Pratt & Whitney FR-23116

FE810401

Figure 2.3.3-21. Completed Subscale Chamber Showing Inlet Tubes
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FE610400

Figure 2.3.3-22. Completed Subscale Chamber Showing Outlet Tubes
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2.4 TRANSITION SPOOLPIECE

2.4.1 Transition Spoolplece Design

In August, 1989 a design was started for a spool piece that would allow the P&W injector to interface with
a NASA combustion chamber. This calorimeter spool piece was to be available to permit use of the NASA

chamber (reference contract NAS8-37575) as a_ option to the P&W full calorimeter chamber ff required and

could be used to investigate the effects of combustion chamber length since the NASA combustion chamber

could be run with either a four or eight inch spool piece. This would permit testing of overall lengths of

approximately 13 and 17 inches from the injector face to the throat. The concept for this spool piece is shown

in Figure 2.4.1-1. Figure 2.4.1-2 presents the intended test article assembly.

A forward section of the damaged subscale combustor copper liner was salvaged and used for the spoolpiece

liner. This liner was brazed to the ID of a stainless steel housing, while the coolant inlet and outlet tubes were

brazed to the outside of the housing. The design contains 8 cooling circuits and 17 cooling channels in total: 1

circuit feeds 3 cooling channels, and 7 circuits feed 2 cooling channels each.

Interfaoe

I NASA°--
14.00 dia -

i 5.66 dia

! d;.

8.8 dia - Imerface
Braze to P&W

L_rvaNA_SoA_mZ Housing Injector
SubscaleChamber) 347SS

Figure 2.4.1-1. Transition Spoolpiece- P&W Injector to NASA Chamber
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Injector.--...-J Piece._t

3.31
dia

"13 in. CombustionChamberLengthAlso
Poss_t_eWi_ 4 _. Spoo_Piece

Figure 2.4.1-2. Transition Spoolpiece Installed in Rig

2.4.2 Transition SpoolpJece Fabrication History

Braze cycle evaluation was performed to determine the best braze cycle for the NASA Z liner to stainless
steel housing braze. Braze samples were run to investigate Kirkendall voiding effects, diffusion of the braze

material into the parem metals, erosion of the parent metals, effects of the thermal cycle on the chemistry,

microstructure, and tensile properties of the parent metals, and the strength of the NASA Z to stainless steel
brazejoint.After reviewingavailableinformationon the brazingof NASA Z to stainlesssteel(304 or 347)

an experimentalmethodologywas employed to investigatebrazevariables.Three flatcoupons of stainlesssteel

wcrc brazedtochannelsectionsof NASA Z to investigateplatingthickness,erosion,and wettingeffects.The

samples wcrc evaluatedand indicatedthe requiredsetof conditionsnccdcd to ensurea properbraze.Those

conditionswere appliedto two testrings.The ringswcrc constructedto simulatethe spoolpieceas closeas

possible.Testringnumber one was brazed,hydrostaticallypressuretestedto I0,000psi,and cutup foranalysis.

No leakswere observed atany jointon testringnurnbcrone duringthe pressuretcsLand nearly100 percent

coveragewas achievedwithno noticeableerosionor diffusionof any kind.Using resultsfrom testringnumber

one, testringtwo was run throughthe braze cycleand hydrostaticallypressuretestedto I0,000psi. Figure

2.4.2-Ishows testringtwo. The eightsupplytubes,visiblein the figure,allowfourindividualcoolingcircuits

to bc tested.The pressuretestof testringtwo showed no channel-to-channelor externalleakage.

The braze material for the NASA Z to stainless steel joint is 80 percent gold and 20 percent copper plating.

During the first plating trials the copper was plated to the inner diameter of the stainless steel housing and a
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gold-sulfite plating solution was used to plate the gold over the copper. This technique proved unacceptable

since the sulfur in the gold plating solution attacked the copper before the gold was deposited. Replacement of
the gold sulfite solution with a gold cyanide solution solved the problem. The resulting plating did not blister,
crack, or peel away from the surface, after the bake cycle to remove hydrogen, thus indicating a good bond.
Silcoro 75 braze foil wig be used to attach the coolant supply and discharge tubes to the housing, samples of

that joint have passed a hydrostatic pressure test of 10,000 psi with no leaks observed.

Tensile testing of NASA Z samples run with the test rings, indicated a yield strength of up to 40 percent

below that specified for NASA Z. Material stresses during operation were reviewed and it was determined that

the resulting NASA Z properties are sufficient to maintain acceptable design margins.

Based on information received from NASA, it was apparent that a fast cooldown from the braze

temperature (17250F ") to the precipitation hardening temperature (900°F ") is essential to limit grain growth

and the corresponding reduction in NASA Z yield strength. The cooldown in the latest braze cycle was set as
fast as the furnace would allow, and another braze sample was run to the latest cycle with an equivalent thermal

mass to the actual spoolpiece to determine the actual cooling rate that could be expected for the spoolpiece. The

braze proved acceptable, and a NASA Z tensile specimen run with the braze sample provided a yield strength

of 12,400 psi, with a cooldown rate of 36°F/minute. This yield strength was lower than expected, based on the

NASA supplied data, but was higher than that achieved with the previous braze cycle. Structural analysis showed

that even the lower yield strength (11,800 psi) resulting from the previous braze cycle provides acceptable design

margin for the NASA Z liner.

The stainless steel housing, NASA Z copper liner, and inlet and exit tubes for the transition spoolpiece were
machined at P&W. The ID of the housing was plated with the .80 percent gold and 2O percent copper braze
material for braze to the NASA Z liner. At the same time that the liner was brazed to the housing, the inlet an(

exit tubes were brazed to the housing, and ferrules were brazed to the tubes using Silcoro 75 braze alloy.

All ferrule-to-tube and tube-to-housing brazes proved to be acceptable, but an initial helium leak check found

four small leaks in the copper liner to housing braze at either of the outermost channels to the outside. There
was no channel-w-channel leakage. Several methods of repair were evaluated including a furnace braze repair, a

local TIG braze repair, and a local repair with an electron beam welder. Repair options were evaluated using the

braze samples which were run to initially develop the process for the transition piece. The method chosen was

a local repair with a Yttrium Aluminum Garnet (YAG) laser welder using braze material as a filler. The laser

introduced very little heat into the part, so the risk of degrading the properties in the NASA Z liner was low.

A leak check after the first laser repair attempt revealed that two tiny leaks still existed. Another laser repair

corrected all leaks. The spoolpiece was then proof pressure tested to 5000 psi with water and helium leak tested

again. There were no leaks during either test.

Due to a blueprint error, three bolt-holes on the injector interface were drilled through to the combustion
chamber interface. Since these holes are inside of the sealing surface on the chamber interface and outside of

the sealing surface on the injector interface, this condition creams a leak path for hot gases to escape from the
combustion chamber to the outside. This will be corrected by inserting a threaded plug into the hole on the

chamber interface and welding it shut to seal the leak path. As a result of the welding, the interface surfaces

had to be ground flat. A post-grinding proof pressure test, again with 5000 psi water was conducted, as well as
another helium leak check. Two small leaks were noted during the proof test at previously repaired areas. This

occurred because the depth of penetration of the repair was kept low to avoid significant heat input to the part,

and subsequent machining removed part of the repaired area. After the subscale testing was completed, ther r
was no further scheduled use for this hardware, to save the cost required to complete the repair the spoolpiecL

was stored nonfunctional.
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In reviewing the final processing of the u'ansition spool piece, it was decided not to install the two dynamic

pressure ports. This operation consisted of drilling a 0.070-inch nominal diameter hole through a 0. 110-inch wide

land at each location, then opening up this diameter through the structural shell to accommodate the transducer

installation. This would require precise placement of the hole to avoid breaking through the land into the coolant
passages. Although this could have been done with accurate measurements and the use of X-ray to confirm land

locations, this feature might not have been needed for the transition spool piece. The intent of this piece was to

provide a backup for the calorimeter chamber, if required. If the spoolpiece were needed for this purpose, the

dynamic probe features could be installed. A second use for this piece was for possible testing to investigate

chamber wall blanching. For this application, the dynamic probes would not be required, since testing would be

conducted at points that were previously proven to be stable.

FE_

Figure 2.4.2-1. Braze Sample Assembly for Transition Spoolpiece

2.5 40K SUBSCALE TESTING

2.5.1 Test Setup

This section intentionally left blank.

2.5.2 Instrumentation

The subseale test rig featured a wide may of instrumentation to provide data from which the stability and

performance of the rig could be evaluated. Table M provides a complete list of the instrumentation for the

subscale injector while Figure 2.5.2-1 shows the approximate locations of the subscale injector instrumentation.
The LOX cavity featured 2 static pressure taps, 180 degrees apart, a high response Kulite probe for dynamic

pressure, and a Rosemount RTD (resistance temperature device) for LOX cavity temperature. The fuel cavity

featured two static pressure taps and a type E T/C for measuring the fuel cavity temperature. Another high

I_mt.r 2--101



Pratt & Whitney FR-23116

response Kulite probe me_ured the dynamic pressure in the fuel manifold. Two type C/A T/Cs were brazed t_

the faceplate (180 apart) to measure the faceplate temPerature. Also brazed to the faceplate 180 degrees ap= ..._-
were two static pressure taps to measure combustion chamber pressure (Pc). One of these taps was aspirated with

hydrogen fuel to prevent it from freezing. The combustion chamber has two ports 120 degrees apart near the
injector face which were normally used for high frequency PCB transducers to measure the combustion chamber

dynamic pressure but were also occasionally used for static pressure taps. Each of the chamber's 72 coolant

outlet ports was fitted with a T/C to measure the temPerature of the water leaving the chamber coolant passages.

The high-frequency pressure transducer selected for the subscale rig testing was the Kulite model CT-375-

5000 for the injector LOX dome and fuel manifold. The Kufites were flush or near flush mounted and had a

response of at least 75,000 Hertz before a 5 Percent amplitude error occurs. The Kulite probes had the advantage

of being able to indicate both the static and dynamic pressures. This model Kulite was deigned for use in

cryogenic temperatures for pressures up to 5000 psi and is compatible with both LOX and hydrogen. When
methane was to be the fuel, the Kulite model I-rI'M-375-5000 would have been used in the fuel manifold. The

Kulite probes were calibrated at P&W before installation in the rig.

The PCB probe model 122A was selected for the combustion chamber since would be exposed to hot

combustion gases and will require cooling. Due to the construction of the calorimeter combustion chamber,

it was not possible to mount the probe flush to the combustion chamber wall. The mounting configuration is

shown in Figure 2.5.2-2. With this configuration, it was predicted that the response error would be less than

six percent at the first tangential acoustic frequency.

Concerns about the possibility of freezing of the chamber static pressure taps in the faceplate caused the

evaluation of anti-icing concepts for these taps. This issue was raised by the fact that the hypotubing was routed

to the faceplate through the fuel cavity, which contained cold (175 R) hydrogen gas. Experience from the RL-10

and SSME ATD programs has shown that, unless there is a positive outflow of gas from the hypotubing, the

combustion product (steam) will tend to migrate into the hypotubing where the extremely cold temperature causes

it to freeze. The resulting ice blocks the hypotubing and prevents accurate reading of chamber pressure. The

SSME ATD program addressed this problem two ways. One tap was purged with high pressure gas through the

start transient until steady state was reached. Once at steady state, the purge was mined off. The tap would

operate normally, providing accurate pressure readings until it froze up after about 15 to 20 seconds. The second
tap had a small pinhole in the hypotubing near the faceplate so that a small amount of hydrogen from the fuel

cavity would bleed into the hypotubing and provide a positive outflow into the combustion chamber preventing

steam from migrating into the hypotubing and freezing. This small hydrogen flow would cause an error in the

pressure readings of about five psi.

Since the injector built under this program also had provisions for two chamber pressure taps, two types

of pressure taps were used. One aspirated probe in which the probe is purged with hydrogen fuel during the

run, and a non-aspirated probe, will not be purged with hydrogen fuel during the run. Since run times would

be shorter than the 15 to 20 seconds it took for the taps to freeze in the ATD program, it was thought that

the non-aspirated probe may not freeze at all. Data from this port will be used to correlate the error from the

aspirated tap. The aspirated probe used the anti-icing scheme shown in Figure 2.5.2-3. This is a variation of

the pinhole used in the ATD program. This scheme provides enough positive hydrogen outflow to assure th

the tap will not freeze while suffering a small error in the pressure readings, 1 to 3 psi. This tap will be abl_-

to continue reading chamber pressure should the first tap freeze.
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Figure 2.5.2-1. Subscale Injector Instrumentation
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Figure 2.5.2-3. S_scale Chamber Pressure Tap Anti-Icing Scheme

2.5.3 Test Program Discussion

2.5.3.1 Analytical Model

An analydcal model of NASA MSFC TSll6 was created to assist in setting the run sequence. This
simulation was a state variable model that relies on a routine which solves simultaneous equations. The model
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incorporated volume dynamics in the LOX injector, fuel injector, and combustion chamber. It considered inertial
and frictional line losses and ran steady-state or transient. It could be run with a choice of fuels (Hz or CI-h) and
includes injector purges. It has restart capability and graphics capability. It also had injector purge capability -
and LOX injector heat transfer. The test data from previous testing conducted at TS116 was used to calibrate
the model. Following this calibration, the model was used to develop a safe start and shutdown sequence for

the P&W subscale testing.

2.5.3.2 Original Test Matrix

The original subscalc test plan was developed using a statistical design of experiment approach. Attempts
were made to use a pure Taguchi approach to tim experiments, however, this would have resulted in an L81
(81 test) matrix. Work continued on the matrix, with the P&W statisticians using alternate statistical techniques

and with engineering assessing the variable and response requirements to develop the central composite matrix

that resulted in a total of 21 tests. The testing was established in five phases to provide safe checkout of the
test article, confirmation of design point performance, injector characterization, establishment of experimental

repeatability, and exploration of the effects of film cooling. These phases are described as follows.

The first test series is presented in Table 2.5.3-I. The first test was planned to run to a chamber pressure

of 450 psia and the second test to I000 psia. As a result of discussions held with NASA, the decision was
made to proceed directly to 1000 psia for the first test to allow for operation of the main oxidizer supply valve

to verify valve scheduling. The second test would have been to run to the minimum power level of 1690 psia

to establish valve scheduling to a steady-state level. The third test would be run to provide full test duration
at a low chamber pressure. _

Table 2.5.3-1. Early Phase 1 Test Matrix

Oxidizer Fuel Oxidizer Fuel Fuel Fuel Chomber Mixture

Tel Flow Flow ACd/Elewwnt ACd/Eler_n& Temperature ElementJ Pressure Ratio

,_'_, (ppt) _pps) (S+i In.) (Sq In, j r'RJ (Noj (p.,ia) [O/FJ

Start TBD TBD 0.0t37 0.0el5 245 62 |P_O 55

Pour TBD TBD 0.0t37 0.0t 15 245 62 L690 5.5

Low

ON TBD TBD 0.0137 0.0115 245 62 1690 55

The second test series is presented in Table 2.5.3--2. This series was intended to demonstrate testing of the

Space Transportation Engine (STE) minimum power level (MPL) and RPL design points. This series would

have established the baseline performance of the test article for comparison to later testing to determine the

test repeatability. In addition, these tests would have investigated the effect of outer row mixture ratio biasing
on combustion chamber wall compatibility by running the two design points at two different levels of outer

row mixture ratio. Although it was understood that the MPL design point had been deleted from the STE
requirements, the testing at this power level was to be included in the test plan to provide a low chamber pressur_
point to bracket the STE, in the event that the baseline STE chamber pressure was reduced.
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Table 2.5.3-2. Early Phase 2 Test Matrix

Tesg
NumL_r

02
Flow Flow

Oz .tCdl H= .4¢d/Etenwnt No. of
Element latter Outer EtementJ

Film
Coolant

I. MP MP

2 MP MP
3 RP RP

t RIP RP

Note|;

"STE
L

H

MP

RP

LI

L2

L L LI H MP H °
L L L2 H MP H

L L Ll H RP H"

L L L2 H RP H

I_sign Point fCur_ent Phas_ B)
Variable mt at Low Level

Varmbkt mt at High L_d

Equivalent to STE Minimum Power Level

Eqmvalant to STE Rated Power Level
Outer Row _t to Provide Design Point Outer Row Mizttme Ratio (5.2)

Outer Row _ to Provide Level 2 Outer Row MixtuR Ratio (TBD)

The third test series is presented in Table 2.5.3-3. The purpose of this series was to provide complete

characterization of the injector performance. Six test variables were established for this test series: ACd per

oxidizer element, effective area per fuel element, oxidizer mass flow, fuel mass flow, fuel temperature, and

number of elements. These variables represent the basic design and operation pararneters and variations in these

will affect such items as chamber pressure, mixture ratio, momentum ratio and propellant flow per element. This
table shows how the characterization would have been set to provide an exploration of injector performance.

During the actual testing, these tests would have been run in random order to reduce the effect of any time
related changes (i.e. chamber wall erosion, insmmaentation shift).

Table 2.5.3-3. Early Phase 3 Test Matrix

H_ ACd/E&nwnt
Test 0,_ H e 0_ ACd/ ,Vo. of H_ Film

N_mber _ou: Flow El_men_ Inner Outer Elements Tempeeatu re Co_la_t

I L LL L L L L L H

2 L LH L H H H L H

3 L LL H H H H H H

4 L LH H L L L H H

5 H HL H L L H L H
6 H HH H H H L L H

7 H HL L H H L H H

8 H HH L L L H H H

Notm_

"[naer and Outer fed ACd in p,ira for outer row and corn elementa to ensure pmpm' O/F mM£h
L Variable _t at Low Level

H VluriibJe --t at High Level

LJ.. - Ht Flow =,t Low for _w Pc - L690 p_ LOX Flow

LH - H_ Flow set High for Low Pc " t690 p_a LOX Flow

HL - H 2 Flow mt Low for Hilh Pc " 2250 p_a LOX Flow

HH H= Flow mt High fur High Pc - 2250 pti, LOX Flow

H t Flows Nested in 0 2 To IAmit Pc and O/'F

The fourth test series is presented in Table 2.5.3-4. The purpose of this series is to provide information on

test repeatability. The two tests will be repeat points of the two STE design points run in the first test series.

This repeat testing will provide information on the natural variation of test-to-test to permit evaluation of the
actual effects due to varying test parameters or hardware configuration.
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Table 2.5.3--4. Early Phase 4 Test Matrix

7"==¢ 0._ 1"I= 0 z ACdl Hz ,.tCr11£1ement No, of
Nwnl_r Flow Flow Eltrr_nt Inner Outte ElemenLt

14z Film

Temperature Cnolont

I MP MP L L

2 RIP RP L L

Notes:

L . Variable _t at r_w Level

H - Variabit .,.t at High [_wel

MP Equivalent to STE .Minimum Power Level

RP Equivalent to _ I_tmi Power L_v,i

LI

L! H MP H
LI H RP H

Ou_r Row mt to provide DmHlgn Point O_ter Row Miztt_e Pattio

Tic fifthtestseriesispresentedinTable2.5.3--5.The purposeof thisserieswas todeterminewhat levelof

oxidizer/fuelratiobiasingand film-coolingwould be requiredtoprevem chamber wallblanching.The original

intentof lidsserieswas to reducethe film-coolingto allow thecombustor walltemperatureto run at greater

than 1000°F to determineifchamber wallblanchingwould occur.During the testplan review,the issueof

time as relatedto blanchingwas discussed.The concernwas thateven thoughthe wall temperaturecould be

raisedabove 1000°F,blanchingmight not be seen sincetherewas some evidencethatitisrelatedto exposure

time.This serieswould,however, provideinformationon theeffectsof varyingthe amount of filmcoolingon

combustion chamber wallheatfluxthroughthe lengthof the chamber.

Table 2.5.3-5. Early Phase 5 Test Matrix

Test O z H 2 0,,ACd/ 14_ACdlEl*m_ng blo. ol H_ Film

N_r _ Flora Element In_r Outer E_ment_ Te_roture Cootant

1 MP MP L 5 L1 H MP L

2 MP MP L L _ H MP L

3 RP RP L L LI H RP L

4 RP RIP L L L2 H RP U

L
H

MP

RP

LI

L2

Vat, iable _t at Low Level

Vatmbte _¢ _ High Level

g.,qtuvakmt to STR =Minimum Power I.,we!

F.qu/velent co STE Rated Pc_er Level

Out_ Row set to Provide Design Point Ou_r Row Mixture P,,atio (5.2)

Outer Row ._t to Pt_'ide Level 2 Outer R_w MixCu_ Ra£io t'rBO)

Because of tight schedules at "IS 116 test stand atMSFC, there was not enough time allowed for the P&W

subscale testing to run all of the tests in P&W's original test plan. Therefore, a new test plan was developed to

fulfill testing requirements within the allotted time frame.

2.5.3.3 Final Test Matrix

The subscale test plan was revised at the request of NASA to reduce the number of tests. This reduction

was prompted by NASA budgetary reslrictions and by test schedule restraints resulting from the recent delivery

slippage of the P&W calorimeter combustion chamber and the NASA combustion chamber throat section. The

revised plan had only 15 tests over three test series. The basic approach using statistical Design Of Experimem

(DOX) was retained, but repeat tests and demonstrations of the predicted optimum configurations were climinatcQ, _

A mid-power point test during the Series 1 checkout was also eliminated.
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In addition to these changes, the testing which involved elimination of injection elements was also deleted.

This was a result of concerns raised by NASA relative to early SSME development experience regarding the

blockage of the oxidizer elements and potential for LOX leakage causing local burning and element damage. It
was felt that minor leakage could be tolerated in the core elements, but that the scarfed outer row elements might

be damaged. As a result, the plan had been to block only some of the core elements; however, if only the core
elements are blocked the LOX flow to the outer row is increased and the outer row mixture ratio is increased.

This could be compensated for by changing the outer row facenuts to increase the flow and lower the mixture

ratio. This however, would introduce another dependency in the test matrix requiring additional tests.

The final test matrix for the subscale test article is presented in Table 2.5.3-6 and consists of three test
series as follows:

Series 1 Initial Checkout: The purpose of this test series is to safely demonstrate test article ignition

and transition to steady-state flows.

Series 2 Statistical Injector Characterization and Performance: The purpose of this test series is to

fully characterize the injector performance. This is a statistically designed experiment during which 5

variables at 2 levels each will be evaluated: LOX element ACd, fuel element ACd, fuel temperature,

fuel flow and LOX flow. These parameters were specifically chosen because they are the variables

which characterize the combustor and hence its design. From these parameters, the traditional injector

characterization variables such as injection velocities, chamber pressure, and mixture ratio can be

obtained. In a traditional test matrix, 32 tests would be required to investigate every combination of

two values for each variable, but only 8 tests were required using the Taguchi DOX. Chamber pressures

of approximately 1710 psia and 2400 psia and core O/F mixture ratios between 5.5 and 7.5 were run

to bracket the expected STE operating conditions.

Series 3 Wall Compatibility: The purpose of this test series is to evaluate the effects of scarfing,

film cooling and outer row mixture ratio biasing on the chamber hot wall temperature and heat flux

as well as injector performance. Outer-row mixture ratio biasing increases the fuel flow area of the
injection elements nearest the chamber wall, while film cooling allows extra hydrogen gas to flow

directly through the injector faceplate so that the gas impinged directly on the chamber wall. Also,
the exits of the outer-row LOX injector elements were scarfed to direct most outer-row LOX away

from the chamber wall. All three schemes sought to reduce wall heat flux by reducing the near-wall

O/F ratio, which lowered combustion temperatures there. Mixture ratio biasing and film cooling use

fuel redistribution upstream of the injector, while scarfing depends on LOX redistribution downstream

of the injector. All three wall-durability enhancements were present in the Series 2 tests; they were
sequentially removed in the Series 3 tests.
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2.5.3.4 Subscale Testing

The subscale test article was installed onto NASAMSFC TS 116 with no significant problems. Figure 2.5.3-1

shows a schematic of the subscale test rig, the injector mounted on the calorimeter combustion chamber.

Six series of water blow-downs were accomplished to calibrate the calorimeter combustion chamber coolant

passages and to set the size of the discharge orifices. During each of these blow-downs, three different levels of

coolant inlet pressure were run. The purpose of this testing was to determine and set the size of the discharge

orifice which sets the flow through each of the seventy-two coolant circuits. The intern was to provide sufficient
flow for cooling while maintaining control of the flow with the orifice rather than with the pressure drop in the

channels. Initial sizing of the orifices was based upon preliminary flow testing performed at P&W during the

fabrication process. Although these flows were accomplished at only 50 psia inlet pressure, there were only a

few orifice sizes required to be changed when the calibrations were performed at pressures up to 4500 psia.

The following is a summary of the subscale tests:

Test No. P242-001 (Matrix Test No. 1) occurred on 8/25/90. This was an ignition only test to determine

the level of chamber pressure that would result from level 1 (partial) LOX flow and TEMTEB. The

purpose of the test was m establish this level to allow setting the no-ignition abort chamber pressure
level.

Test No. P242-002 (Matrix Test No. 2) occurred on 8/27/90. The purpose of this test was to provide

a low chamber pressure and low O/F checkout of the test article. The test was terminated due to a

low fuel temperature. A chamber pressure of approximately 1300 psig was achieved before the cutoff.
The fuel temperature was set by flowing through a bypass valve, and when the main fuel valve was

opened to allow flow to the injector, the temperature dropped below limit. The temperature was on

manual control and could not be brought into limit within the time allotted. Following this test the gas

valve which controls the temperature was been ramped to a preset position when the main fuel valve

was opened, thus requiring less manual adjustment of the gas valve to assure that the temperature was

met. During this firing, there was significant combustion outside of the test article due to hydrogen

leakage at the fuel inlet line joints.

Test No. 1:'242-003 (Matrix Test No. 2) occurred on 8/28/90. This was another attempt to perform

the checkout testing. A cutoff occurred due to low fuel venturi pressure. This parameter is checked

after the main fuel valve reaches open and must be within limits within two seconds. The absolute
cause of the cutoff was not determined, but believed to be related to several items. The LOX valve did

not achieve the desired position, causing a lower than expected chamber pressure, and subsequently, a

lower venturi pressure. It was also suspected that an error occurred in the venturi pressure _ansducer
reading due to leakage through a partially open bleed valve. For the next test, the LOX valve position

was increased to ensure that the LOX valve was sufficiently open and the bleed valve was removed
from the transducer line.

Test No. P242-004 (Matrix Test No. 2) occurred on 8/29/90. This was a successful firing lasting for

9.9 seconds. A chamber pressure of approximately 1550 psig was attained for 3.6 seconds. An observer

cutoff occurred at 0.100 second less than planned due to combustion outside of the test article. Post

test inspection of the test article showed it to be in good condition.

Test No. P242-005 (Matrix Test No. 3) occurred on 8/31/90. This test was cut off due to no-ignition

detect. This was due to insufficient LOX flow, and even though ignition did occur, the chamber pressure
level attained was below that determined from the cold flow and ignition tests. For the next test, the
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LOX valve position was increased from 4.4 percent to 5.0 percent to assure that the valve would open to

a position required to make the no-ignition cutoff level. In addition, the no-ignition abort sample time

was increased to 1.0 second from 0.5 second. The cutoff level was also reduced by 5 psi to 35 psig.

Test No. P242-006 (Matrix Test No. 3) was completed on 9/5/90, but test objectives were not met

due to test stand LOX valve malfunction. The main oxidizer valve did not achieve a five-second open

indication until eight seconds after the sequencer start due to a valve indicator error. After the indication

was received, the TEA/TEB valve was opened, igmtion occurred, then the main fuel valve started to

open. Cutoff occurred at the planned 10 seconds duration, thus full fuel flow was not achieved. The

start sequence was changed to permit proceeding to the 'IEA/TEB flow one second after the LOX valve
leaves the closed position or after the valve reaches the desired position.

Test No. P242-007 (Matrix Test No. 3) was completed on 9/6/90. A run of 8.6 seconds was

accomplished with 2.4 seconds at steady-state conditions of 1790 psia chamber pressure at an overall

mixture ratio of 5.66. The planned lO-second run was terminated by the test conductor due to fire on

test stand as a result of hydrogen leakage. Visual observation of _ test article showed no distress.

This test firing is shown in Figure 2.5.3-2.

Test No. P242-008 (Matrix Test No. 4) was completed on 9/7/90. The test sequence duration was

approximately 13 seconds during which three different levels of hydrogen temperature were attained.

A chamber pressure of approximately 1750 psia was attained. Before the testing, the fuel inlet line
was removed and the seals were replaced; there was no evidence of fire during the test.

TcstNo. P242-009 (MatrixTestNo 5) was completedon 9/10/90.The testsequencedurationwas

approximately13 seconds,duringwhich two differentlevelsof hydrogen temperaturewcrc attained.

A chamber pressureof approximately1760 psiawas attained.Afterthistest,a smallre'caof nickel

dclaminationwas noticedat the chamber dischargcend. The dclaminationoccurredbctwccn thrcc

adjacentboltholesat approximately0.200 inchfrom the nickel/copperinterface.Sincc thcrcwas

sufficicntnickelatthislocationtowithstandthc loads,therewas no actiontaken.This dclamination

was monitored throughout tl_ remainder of the test program, and no growth was noted.

Test No. F242-010 (Matrix Test No. 6) was attempted on 9/12/90 but was cut off after six seconds

due to chamber pressure dropping below the low limiL A faulty LOX valve feedback indicated that

the valve had opened too far, so the valve was closed, causing chamber pressure to drop.

TestNo. P242-011 (MatrixTestNo. 6) was completedon 9/12/90and was a successfulfull-duration

run of fifteenseconds. Two levelsof hydrogen temperaturewere run,and a chamber pressureof

approximately1740 psia was attained.

Test No. P242-012 (Matrix Test No. 7) was attempted on 9/13/90 but the test was terminated when
the LOX valve did not open.

Test No. P242-012 (Matrix Test No 7) was accomplished on 9/14/90, but due to a drop in LOX run

tankpressure,thedesiredconditionswere not achieved.The pressurecontinuedtodecreasethroughout

therun and was believedtobc duc to a malfunctionof thevalvethatcontrolsnitrogenpressurization
of the LOX tank.

Test No. P242-013 (Matrix Test No. 7) was accomplished on 9/15/90. The full-duration 15-second

test achieved a chamber pressure of 2336 psia. There was no distress to the test article at this high

chamber pressure levcl.
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Several attempts to complete the next test in the matrix were made between 9/17/90 and 9/20/90. These

were cut off for a variety of reasons including low fuel pressure, low fuel temperature, problems with the LOX
valve position potentiometer, and a faulty T/C on the calorimeter chamber.

Tests P242-020 (Matrix Test No. 8) and P242-021 (Matrix Test No 9) were accomplished on 9/21/90.
All test objectives were met during both full-duration 15-second firings.

Tests P242-022 (Matrix Test No. 10) and P242-023 Malrix Test No. 11) were accomplished on 9/22/90.

All test objectives were met during the full-duration firings. These were the final tests of the Taguchi

injector characterization test matrix.

Test P242-024 (Matrix Test No. 12) was accomplished on 9/24/90. The 15-second duration run reached

a chamber pressure of about 1750 psi. This was the first of a series of wall compatibility tests, which

was reinstated into the test program to determine the effect of outer row mixture ratio biasing, film

cooling, and outer row element tip scarfing on combustion chamber wall temperature and heat flux
as well as on injector performance. This injector was configured without mixture ratio biasing by

changing the outer row facenuts to be the same as in the core. On 9/25/90 the injector was dismounted
from the thrust chamber so that the scarfed tips of the outer row LOX elements could be removed.

The scarfed tips were ground and milled to be flush with the injector face, and following cleaning, the

injector was remounted on the test stand the next day.

Test P242-025 (Matrix Test No. 13) was run on 9/26/90 but was cut off by an observer due to a fire

caused by a hydrogen leak at the injector fuel inlet. The seals were replaced before the next run attempt.

Test P242-026 (Matrix Test No. 13) was accomplished on 9/26/90 for the full duration of 15 seconds

and reached a chamber pressure of 1821 psi. Post test examination of the test article showed no distress

as a result of removing the outer row scarfing. The injector was again removed from the thrust chamber
on 9/27/90 so the film cooling feature could be removed. The 52 holes were welded shut and the

injector was remounted onto the chamber.

Test No. 1:'242-027 (Matrix Test No. 14) was accomplished on 9/28/90 for the planned 15-second

duration. This test was run without any wall compatibility features. There was no distress noted on

the test article following this test.

Test No. P'242-028 (Matrix Test No. 15) was accomplished on 9/28/90 for the planned 15-second

duration to complete the subscale testing. Before this test, the mixture ratio biasing was reinstated

by changing the outer row facenuts. The test article was removed from the test stand on 9/29/90.

Teardown and post-test inspections were accomplished in early October 1990.

Throughout the test series, the fuel temperature was varied approximately 10R during each run. The resulting

decrease in H2 flowrate led to small variations in chamber O/F ratios. Therefore, up to three data points at

approximately 3 second intervals were obtained for a given test. The data were sequentially tagged A, B and C;

A summary table of the test results is shown in Table 2.5.3-7. Figure 2.5.3-3 presents typical chamber pressure
traces for two of the runs. The total test duration of all runs was 286.3 seconds
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Following the testing, the subscale test article was removed from the test stand at MSFC and disassembled

for visual inspection. The injector was in exceflent condition following the testing. The faceplate and LOX dome

were removed to facilitate inspection of the fuel and LOX cavities, respectively. A powdery residue coveting
both sides of the porous faceplate and the fuel cavity was analyzed and identified as products of combustion

of the I"EA/TEB hypergolic and oxidizer. It was determined that due to the low flow capability of the helium
purge system used during the ignition period of the start a'ansient, backflow of the ignition products into the

fuel cavity occurred. However, there was a sufficient volume of purge gas in the fuel lines when the fuel was

tin'ned on to expel the ignition products from the fuel cavity before the fuel arrived at the injector. There was

no residue present in the LOX cavity, but one outer row element had one tangential entry slot blocked by a

piece of copper foil or plating. The foreign object was determined to have been introduced from the upstream

oxygen supply line. There was no visible effect on the chamber wall downstream of the element due to the

blockage of the element slot.

Concentricity of the facenuts to the elements, which had no specific design feature for maintaining position

relative to the elements, was unchanged from build and the fuel annulus gap was symmetrical within drawing

limits. One outer row scarfed element exhibited a small area of erosion (approximately 0.150-inch long along

tip of element) following test No. 23.

The interpropellant plate electron beam (EB) welds to the injector housing showed no visible evidence of

cracking or distress. The injector was fluorescent penetrant inspected (FPI) after it was returned to P&W, and,

again, no evidence of cracking or distress was found. The injector was fully serviceable without repair, except

that it required replacement of the faceplate chamber pressure and temperature instrumentation.

The combustion chamber was in exceUem condition following the testing. There was no blanching or erosion
of the hot wall. All coolant tubes and welds were in excellent condition, which FPI at P&W confirmed. A local

delamination of the structural nickel jacket occurred following the ninth hot firing at the aft face of the nozzle

portion of the chamber between two seal plate bolt holes. No further growth of the delamination occurred during

the remainder of the testing. The combustion chamber was fully serviceable without repair.

The hypergolic igniter was also in excellent condition, although heavy deposit of TEA/TEB residue was

present on the outer wall of the igniter. The igniter was fully serviceable without repair.
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Figure 2.5.3-1. Subscale Test Rig
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Figure 2.5.3-3. Typical Chamber Pressure Traces

2.5.3.5 Aspirated Chamber Pressure Probe

The readings from the aspirated chamber pressure (Pc) probe in the injector faceplate were found to
read consistently lower than the non-aspirated and chamber wall static readings. The reason for the lower

measurements were due to the jet pump effect inherent in the aspirated design. Ejection of the high-velocity

fuel through the probe orifices creates a suction at the insmunentation tube inlet. This results in a pressure

reading that is lower than the actual chamber pressure. An analytical correction was derived using momentum

and continuity considerations and subsequently applied to the chamber pressure measurements. The correction,

when compared to available wall static pressure readings, is accurate to within 5 psi for the majority of cases.

The magnitude of the correction ranged from 0.5 to 1.3 percent of the chamber pressure, depending on the
velocity of hydrogen jet through the probe orifices.

2.5.4 Analysis of Test Results

2.5.4.1 Injector Performance Analysis

Nomenclature

A* D chamber throat area

Ac, l -- injection area times discharge coefficient

Aw -- faceplate area in wall zone

c* -- characteristic velocity
F -- fuel

MR _ mixture ratio (mass basis)
rh _ mass flow rate

Pc -- chamber pressure (injector plane)
Pf _ fuel pressure upstream of injection
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Po _ oxidizer pressure upstream of injection

Po.th_t -- total pressure at chamber throat
0-- oxidizer

Q/A -- wall heat flux
r2 -- coefficient of multiple determination

S -- striation factor (Equation 4)

T -- temperature
zk. -- characteristic velocity efficiency

r/c*.d_ -- supercritical, diffusion limited characteristic velocity efficiency

Yk-*,mix-- mixing limited characteristic velocity efficiency

Subscripts:

f- fuel

o -- oxidizer

t -- tow

Overall, much useful information was extracted via analysis of the combustion performance data. The

success of the testing and the wealth of information ate due in part to the Taguchi test matrix and in part by the

sequential removal of the outer row mixture ratio biasing, scarfing, and film cooling. As a result of the variation
in conditions and geometry, a broad range of c* efficiencies were obtained. Tests involving radially-uniform

mixture ratio profiles produced c* efficiencies above 99 percent ; non-uniform profiles associated with wall

durability-enhancement schemes resulted in lower efficiencies The reliable combustion data is complemented by
the fact that the chamber was stable at steady-state conditions throughout the test series. Peak-to-peak steady-state

chamber pressure fluctuations were always less than four percent of the average pressure. It should also be noted

that the pressure drop across the injection elements was varied from 4.5 to 11.5 percent of the chamber pressure

by varying the propellant flow areas. Though all three wall protection methods proved successful at reducing
wall heat flux, scarfing of the outer-row, swirl-coaxial injection elements was the technique which resulted in

the least debit in c* efficiency per unit reduction in heat flux.

Data Analysis.

Injector performance for the test series is based on the characteristic velocity efficiency, defined as:

r/c, - C*ge,l/C*ld,_l -- (Po.0a-o=A*/ fiat C*l,_al) (l)

For all the data, Po.t_o= was calculated by standard Rayleigh loss methods. It was assumed in the Po.thro=

calculation that the static pressure at the faceplate is essentially the total pressure at the injection plane, and the

average gas composition at the throat corresponds to the overall injected mixture ratio. The standard NASA

computer model presented inReference 15 was employed to obtain C*l_,a. Heat loss to the calorimeter chamber

was accounted for by modifying the propellant enthalpy input required to generate c*l_. The resulting c*
efficiencies for the injector characterization series of tests (run numbers 7 through 23) were analyzed statistically

relative to the five variables used to generate the test rnatrix.5 A statistical regression model was thus derived:

r/c,= 0.931 + 0.00555rhf-0.000572rho+ 0.0081Acd,o+ 0.0308Acd,f- 8.06XI0"STf (2)

where mass flows are in lbm/sec, areas are in in2, and Tf in OR. Of the five variables, mr, rot, and Aca.f had

the dominant impact on _c*. The r_ for equation (2) is 0.91. Mso of importance in equation (2) are the positive

and/or negative influences of the variables as seen in their respective multipliers. In terms of engine parameters,
the end result is that the lower levels of overall O/F mixture ratio (,_5.7) and lower levels of the relative H2 -

02 injection velocities (DV/Vo,_4) tended to increase c* efficiency.
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Mixture ratio nonunJformities caused by the biasing of the mixture ratio near the chamber wall were a

dominant factor on the experimental r/c, due to the high percentage of injection elements in the outer row (42

percent). To analyze the mixture ratio striation, a streamtube model, defined in Figure 2.5.4-1, was employed.
Streamtube models have been widely used and are based on the assumption that relatively little mixing occurs

in the thin shear layer existing between zones(References 16,, 17, 18,, and 19).

Table 2.5.4-1 presents the predicted O/F mixture ratios corresponding to the test numbers given in Table
2.5.3-7. The calculations are based on measured and calculated flow splits and the assumption that 67 percent

by mass of the outer row LOX is directed into the mid-zone while only 33 percent of that LOX is shifted into
the wall streamtube when scarfing is present. Note also that by the convention of Figure 2.5.4-1, the 1-12film

coolant resides in the wall zone, based on the assumption that the H2 film is perfectly mixed with the flow
from the outer-row elements.
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When the results of the wall compatibility runs are compared with the initial series of tests, the effect of
mixuae ratio striation is evident. Figure 2.5.4-2 contains T/c, as a function of the regression equation and wall

O/F ratio. As each wall compatibility enhancement feature was removed, the mixture ratio across the injector face
became more uniform and r/c, increased proportionally. In fact, c* efficiencies above 99 percent were obtained
for run number 27 because of a near-uniform O/F distribution across the injector face. To better represent this

conclusion, a different linear regression model can be formulated which includes a striation factor (s):

r/c, - s (1.0156 + 0.001644rhf + 0.0000689rho - 0.02383Acd.o + 0.01397Acd.f- 0.00018Tf) (3)

where:

s - (1/ri_) _i [thi (C'talc)i/C'ida] (4)

In equation (4) above, (c*,ak)i is the characteristic velocity associated with the O/F mixture ratio of the
ith streamtube (as in Table 2.5.4--1). The re associated with the above equations is 0.92 and is represented

in Figure 2.5.4-3.

Theoretical Predictions:

Correlation hetween the P&W analytical combustion model and the subscale data has been achieved with

good results. The combustion model20 can be described by the following physical processes:

1. Supcrcritical, diffusion-controlled combustion

2. Mixture ratio variations

3. Propellant mixing.

The first process listed is the original combustion model used by P&W for the subscale injector predictions.

The model uses droplet size and distribution, the heating of the droplets to their critical temperature, the
location of the flamefront, and the diffusion-controlled combustion of the resulting mixture to predict the injector

performance. The mixture ratio variations and propellant mixing processes were used to modify the model to
enhance the correlation with the subscale test data. Analysis of the results led to the addition of a mixing model

which takes into account the relative difference between the fuel and LOX velocities upon injection. It has been

found that for the range of velocities encountered, the mixing process is dominated by swirl and that lower fuel

velocities improve the mixing. This is as opposed to a mechanism dominated by shear in which higher fuel

velocities ate more inducive to higher efficiency.

The overall r/c, is based on the product of a diffusion (combustion) c* efficiency and a mixing c* efficiency,

mass-weighted for each streamtube:

r/c, - (1/rht) Ei (r/c*.cuff x _c*.mix) l'hi (5)

where i represents a single streamtube. The resulting combination of c* efficiencies (combustion, mixing,

and streamtube) leads to the agreement between the analytical calculations and the test data as seen in Figure

2.5.4-4. Most of the predicted _/c* values are within 0.5 percent of their measured counterparts, and all are

within 1.0 percent .

The loss in performance due to the wall durability enhancements has been quantified by the results of the .__
test series. The losses axe caused by mixture ratio variation across the injector face (to provide a lower mixture
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ratio near the wall) which results in the mass-weighted streammbe effecL An injector which has a uniform
mixture ratio across the face would inherently have higher performance than an injector which has the core

elements operating at a high mixture ratio to achieve low wall mixture ratio. During the test series, it was seen
that scarfing had the dominant effect on wall mixture ratio and hence on efficiency. However, the percentage
of outer row elements on the subscale chamber is 42 percent as compared with the full-scale chamber which is

closer to I0 percent. Therefore, the effect of a low mixture ratio at the wall is not as dominant in the full-scale
chamber. The subscale test article, because of the higher percentage of outer row elements provided appropriate

sensitivity to injector stream tube effects and the opportunity for enhanced combustion streamtube modeling.

/--'- Core

m

Mid
Outer
Row

Wall

Injector Face

Figure 2.5.4-1. Streamtube Model of Propellant Distribution
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Figure 2.5.4-4. Experimented Versus Calculated c* Efficiency

2.5.4.2 Combustor Heat Transfer Analysis

Data Analysis:

Throughout the injector characterization portion of the test program, there was negligible effect on the peak

heat flux or the heat flux through the cylindrical portion of the chamber due to the injector variables. The final

four tests provided the majority of the data concerning the chamber heat flux when the three wall compatibility

features, scarfing, film cooling, and mixture ratio biasing were sequentially removed. Of these, the scarfing of

the outer row elements provided the dominant effect on the heat flux.

Experimental data confirm a reduction in wall heat flux resulting from the use of scarfed-tipped, LOX,

tangential-swirl elements. A summary of the predicted O/F mixture ratios are presented in Table K, which shows

an approximate 40 percent reduction in predicted wall O/F attributable to a 45 degree scarfed tip. The scarfed
cases show approximate reductions in heat flux of 16 percent and 30 percent at the throat and seven inches

downstream of the injector, respectively. This effect can be seen in Figure 2.5.4--5. These reductions correlate

with the predicted wall O/F mixture ratio behavior and support the theory that the wall mixture ratio is the driver

for wall heat flux and that scarfing provides a significant shift in the wall .

The benefit-to-cost ratio of the three methods is compared in Figure 2.5.4--6. Though scarfing had the largest

negative impact on efficiency; its c* reduction per unit change in wall O/F ratio (i.e., its slope) is lower than the

other two wall heat flux reduction methods, which means that scarfing is the method of choice for enhancing
chamber wall durability while minimizing the associated performance debit.

Applied to the full-sea/e, 812 element STME injector, scarfing would have much less impact on r/e, because

of the significantly smaller percentage of outer-row injection elements (the only ones scarfed). Also, though the

subscale tests only involved a 45 scarf angle, a different scarf angle could be used to trade wall durability for

performance. Thus scarfing offers the same adjustability as film cooling or mixture ratio biasing with less of a

performance debit for the same near-wall O/F ratio.
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As a comparison of two wall treatments, mixture ratio biasing and scarfing, consider an injector with 25

percent of its elements on the radius nearest the wall and a common near-wall mixture ratio and a common

overall mixture ratio. Of the two methods, scarfing provides the more uniform mixture ratio profile relative to -
the overall O/F mixture ratio, which is the key to minimizing the c* efficiency debit. The greater nonuniformity

of the mixture-ratio biasing approach is a result of shifting fuel from the core to the wall. In contrast, scarfing
does not rob the core of fuel, it robs the wall region of oxygen, which keeps more of the chamber nearer
the overall O/F ratio.

Figure 2.5.4-7 presents calculated c* efficiencies for a range of percentages of injectors in the chamber core.
This figure shows that c* efficiency should be at least one percentage point higher than film cooling and at least

two percentage points higher than mixture ratio biasing when each is the sole means of a,-hieving a wall O/F
mixture ratio of 3.0, with an overall mixture ratio of 6.94.

Analysis of the data also revealed that LOX tangential-swirl elements provide an additional reduction in

barrel heat flux levels when compared to SSME subscale data. Figure 2.5.4-8 is a comparison of the wall heat

flux profile of a representative SSME subscale data point (test 36,(Reference 21)) and a representative, unscarfed
injector configuration (test 27C). Results for a scarfed injector case are also shown. The two important points of

this figure arc: (1) the throat wall heat fluxes arc similar between the SSME subscale and test 27C; and, (2) the

wall heat flux in the barrel region is significantly reduced for the unscarred injector configuration. Figure 2.5.4-9

confirms that LOX tangential-swirl injectors reduce barrel wall heat flux when compared to the SSME subscale
data. In this figure the wall heat flux was scaled by both the chamber pressure and the barrel contraction ratio to

the 0.8 power. The additional test point is from a LOX, recessed, tangential-swirl injector configuration tested at

NASAJMSFC immediately following the P&W test program(Reference 22); this tangential-swirl injector resulted

in a heat flux profle similar to the P&W unscarfed, tangential-swirl injector.

Theoretical Predictions:

Comparison of the test data with the pre-test analytical model revealed that the model was underpredicting

the heat flux to the chamber. This was traced to the model assumption that enthalpy and temperature were

con'elated, primarily affecting transport properties. This was corrected and then modifications were developed to

improve the correlation with the test data in the subsonic portion of the chamber.

An adjustment to the model was made using a constant from end heat transfer coefficient number (cm) to

account for a suppressed mixture ratio at the wall. This suppression is a function of the additional fuel flow
area outboard of the outer row of elements which forms a low mixture ratio stream tube at the chamber wall.

With this modification the model accurately correlates the test data for all of the subscale runs, including those

with the wall compatibility features (scarfing, mixture ratio bias, and film cooling) removed. It also accurately
correlates with previous 40K test data collected by R. Bailey for NASA-MSFC (Refer to "Test Evaluation of

Oxygen-Methane Main Injectors").

In the supersonic section, a flat mixture ratio profile and a reduced cm factor was used successfully tc

correlate with all test data, including prior SSME 40K data.

Ma_er 2-126



Pratt & Whitney FR-23116

Heat Rux
(Btu/in. 2 -sec)

50

40_

30_

20

10

-18

W/o Scarf W/o MR Bias
W/o MR Bias W/Film Cooling

W/o Film Cooling
W/o Scarf

WIo Film Cooling
W/MR Bias

W/Scad
W/o MR Bias
W/Film Cooling

W/Scarf
W/MR Bias
W/Film Cooling

-16 -14 -12 -10 -8 -6 -4 -2 0

Length - in.

Figure 2.5.4-5. Experimental Wall Heat Flux in Subscale Thrust Chamber
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SECTION 3.0
LARGE-SCALE TASK

3.1 LARGE-SCALE INJECTOR

3.1.1 Large-Scale Injector Design

Figure3.I.I-I shows a crosssectionofthecurrentlarge-scaleinjectordesign.Hydrogen fuelentersthrough

a INCO 625 Greyloc flangeand passesintothe INCO 718 manifold. This manifold iselectron-beam(EB)

welded at two locations to the INCO 718 injector housing. The fuel passes fftrough sixty crossover holes into
the fuelcavity,from which itis fed intothe combustionchamber througheitherINCO 718 fuc]sleevesor

annulibetween theINCO 718 LOX elementsand the347 stainlesssteelporousfaccplate.Some fuclalsopasses

throughthe faccplateto transpirationcool the injectorface LOX entersthrough two six-inchschedule XX,

INCO 625 pipeelbows.From thereittravelsintotheLOX elementsthroughtangentialentryslotsand intothe

combustionchamber. Each of the808 LOX injectorsarctangential-entry,swirl-coaxialelementswhich produce

ahollow-conespraywithan averagedropsizeof ISto20 micronsatnormaloperatingconditions.The tangential

entryswirlconceptisshown in Figure3.1.I-2.The injectorisalsodesignedwith 4 inactiveelements,two of

which areused as aspiratedcombustionchamber pressuretaps.The othertwo arebomb ports,where thebombs

forstabilitytestingarc mounted and connectedto leadwires.

Figure 3.1.1-1 shows the injector clement pattern. 108 of the 812 elements form a circular outer row, and 12

elements form a circular inner row while the remaining elements fall into a hex pattern in the infield. The igniter

comes through the very center of the injector. Like the subscale, the large-scale injector features a one-piece

electrodischarge machined (EDMed) interpropellant plate with integral LOX elements. The advantages of the

one-piece interpropellant plate design are described in the subscale injector design section. The large-scale injector

does not incorporate the fuel and LOX flow area flexibility features which were incorporated into the design of

the subscale injector elements. Performance was optimized using subscale test data. While he large-scale injector

does not incorporate film cooling or outer row mixture ratio biasing, it does have scarfed outer row elements for
combustion chamber wall compatibility. Scarfing is described in detail in the subscale injector design section.

The faceplate is mechanically attached to the injector with faccnuts which are screwed into fuel sleeves,
which are in turn brazed onto the LOX elements. This configuration is similar to the subscale injector and is

seen in Figure 3.1.1-2. A major difference from the subscale, however, is that, in the large-scale injector the

faceplate is attached at only a limited number of elements, 234 out of 812. This is the number of attachment

points required for structural integrity. Cost is reduced because fewer facenuts and fucl sleeves must be made.

Fuel flow through the attachment elements is controlled by the gap between the LOX post and the facenut.

For non-attachment elements, the fuel flow is controlled by the gap between the LOX post and the hole in the

faccplate. The LOX flow for all elements is controlled by the tangential LOX entry slots on the upstream side

of the LOX posts.The facenutsarc securedwithpurpleLoctitc,a low-strengththread-lockingcompound. The

OD of the faccplateiswelded to thehousing toprovidea sealbetween the faccplateand the housing. Each

of the fuclslccvctoLOX clementbrazeswas axiallyloadtestedinthe same manner asthe subscalc.Because

the gold-nickelbrazeisductiletic loadtestingdoes not damage the braze.Because thisbraze isstructural

only and is not required to seal between oxidizer and fuel, this braze does not need to undergo the scrutinizing

inspection of a prime reliable braze joint.

The hypergolic igniter for the large-scale injector is integral with the injector housing, and is nothing

more than a small hole which runs trough the center of the injector. A threaded copper (NASA Z) insert was

incorporated into the design to direct the triethyl aluminttm/triethyl boron (TEA/TEB) hypergolic ignition fluid

outward in multiple (4) streams to aid in mixing with the oxidizer. If necessary, the insert can be removed

through the chamber exit. This Insert is shown in Figure 3.1.1-3.
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Review of the bomb attachment lug design with Rocketdyne personnel prompted the addition of a spacer
between the bomb and the bomb port element. The spacer is required to compensate for the excess lug penetration

into the fuel cavity. The long lug would not allow enough clearance for provision of a large-radius bend in

the wire conduit to ease the bomb wire installation. The spacers were fabricated from stainless steel would

be and film cooled by the cold gaseous hydrogen as it exited the porous faceplate. Figure 3.1.1-4 shows the

bomb installation configuration.

The bomb lead wires are routed to the bomb port elements through the fuel manifold, crossover holes, and

fuel cavity in 347 stainless steel conduit. This 0.165-inch OD tube serves two purposes. First, it guides the
lead wire to the bomb ports allowing the installation of the lead wires without removal of the faceplate or even

removing the injector from the test stand. Secondly, the conduit protects the lead wires from forces caused by

possible turbulent hydrogen flow. Instrumentation which is routed to the faceplate or fuel cavities, is also routed

through the 347 stainless steel conduiL

_.,,,, 3-2



Pratt & Whitney FR-23116

--J

z
X

O

-R

,.._. 3-3



Pratt & Whitney FR-23116

Special Faceplate
Attachment Element

\\

m
'_-- Standard Element

Br_21 Sleeve

Figure 3.1.1-2. Low-Cost Faceplate Attachment Scheme
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Figure 3.1.1--4. Bomb Installation for Combustion Stability Testing

3.1.2 Large-Scale Injector Design History

Like the subscale injector, the large-scale injector was originally designed to operate on oxygen methane.

Initially, it was designed to include flexible geometry to allow running three design points (STBE Unique at 315_
Pc, STBE Derivative at 2250 Pc, and STME Unique at 2250 Pc). This would have required removable fuel face ._

nuts and LOX element plugs similar to the configurations used for the subscale injector. It would have an integral

element interpropellant plate manufactured using a potential low-cost method. A removable fuel manifold was

also considered to permit changing the mounting configuration. With this removable manifold it would have

been possible to test this injector in the baseline configuration, a direct feed configuration, with a partial flow
combustion chamber (part of the fuel flow through the liner, the remainder entering through an injector manifold

and mixed in the injector), or mounted directly to the government furnished combustion chamber. Some of these

other configurations would have required additional manifolds.

Early in the design of the large-scale injector and acoustic liner spoolpiece, P&W considered the use of a
direct fuel feed concept for the large-scale testing. With this concept all of the fuel needed for the injector would

be routed through the acoustic liner spoolpiece and fed directly from the discharge of the liner into the injector

fuel cavity. P&W had coordinated the requirements for this concept with NASA since the fuel inlet pressure

required for this concept is higher than that needed to supply fuel directly to the injector. With the maximum

available pressure of 4200 psia as indicated from NASA, it was determined that it would be possible to run at

chamber pressure of approximately 3000 psia when burning methane. Although this was slightly lower than the

STBE Unique design point (3158 psia), it was felt that this would still provide a credible demonsmation of the

injector performance and the low-cost configuration concept. Although it would be desirable to demonstrate this

low-cost configuration during this program to provide credibility for the direct feed concept, this approach was

determined to be higher risk than the baseline plan to use hydrogen coolant from the combustion chamber to

cool the spoolpiece and feed the injector independently. This is due to two primary reasons. Vast, there was
concern for the effects on life of the injector and the acoustic liner spoolpiece. Secondly, there was concern

about using this direct feed concept due to the accurate pressure drop prediction that was needed. This was

due to the fact that the pressure drop in the spoolpiece would affect the injector fuel supply. Because this wa.
to be primarily an injector technology program, it was desirable to be able to explore various areas of injector ....
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operation to determine operating margins. With a direct feed concept such variations in operation may not have

been possible either due to the pressure drop in the spoolpiece or to coolant flow requirements which restrict the
amount of fuel flow variation. P&W decided to proceed with the baseline configuration of cooling the spoolpiece

independently of the injector flow.

Later, it was decided to incorporate as many flisht-type features as possible into the large-scale injector
design. The use of a removable fuel manifold was abandoned to allow the use of a one-piece injector body and

the removable LOX dome was eliminated. These changes will make the injector more representative of a flight

configuration which would use near-net forgings or castings.

At the request of NASA, P&W reviewed the possibility of using two oxidizer inlets instead of one as

originally planned. This request came as a result of consideration being given in the large-scale facility design

to use two oxidizer supply lines. The impact of going to two inlets was reviewed based on the velocity of the
oxidizer entering the injector and the subsequent distribution in the injector. P&W reviewed the use of one iulet

on the injector performance and found that the pressure distribution in the LOX cavity was acceptable as far

as its effect on injector performance and combustion chamber wall heat variations. In reviewing the request
to evaluate running two inlets, P&W also considered the impact on demonstration of the injector performance.

Since pressure distribution will be more difficult with one inlet than with two, it is desirable to demonstrate this

in the testing. However, in order to provide compatibility with the test stand which will use two inlet lines and
two LOX control valves, P&W incorporated two oxidizer inlets into the injector design

These decisions led to the injector design shown in cross section in Figure 3.1.2-1. Tiffs design incorporated

low cost features, where considered feasible, and rig features elsewhere. The low cost features included an

integral element interpropellant plate, similar to the plate the one used in the subscale test rig, and fuel sleeves

integral to the LOX posts, unlike the subscale rig where fuel sleeves incorporating threads for face nut changeout

were brazed to the oxidizer elements. The integral fuel sleeve concept is shown in Figure 3.1.2-2. Also shown

in that figure is an option for brazing of the fuel sleeves. The other features of the injector were designed as rig

components incorporating large factors of safety with simplified geometry for ease of machining.

As requested by NASA, The LSI design was revised to incorporate the interface to the injector to an
insmunentation spoolpiece. This spoolpiece would be used to allow testing of the large-scale injector without

a stability aid. The instrumentation ring would be used in place of the acoustic liner spoolpiece. Only a minor
change to the injector interface was needed to accommodate mounting to the instrumentation spoolpiece.

For a given geometry and chamber pressure, wall mixture ratio was shown to be the primary driver in heat

flux. To provide a uniform circumferential heat flux profile, the full-scale injector element pattern was revised

from a full hexagonal pattern to a circular outer row with a hex pattern for the infield elements (based on the

subscale injector design). By positioning all of the outer row elements an equal distance from the chamber wall,
the occurrence of coolant flow maldistribution would be minimized due to the even heat flux profile.

The integral fuel sleeve concept was evaluated in machining samples. It was determined that with the

present technology, this concept could not reliably and inexpensively produce fuel sleeves which met tolerance

requirements. Since the time and money were not available to develope the potential of the integral fuel sleeve

concept, The injector was redesigned to incorporate a new faceplate attachment scheme. This scheme, shown in
Figure 3.1.1-2, uses a simple, reliable braze to attach the fuel sleeves to the elements. Also, since this braze is

structural only and is not required to seal between oxidizer and fuel, this braze does not need to undergo the

scrutinizing inspection of a prime reliable braze joint. A simple load test is sufficient.

Cost is further reduced by eliminating the complex braze of the faceplate to the injector elements in favor of

mechanically attaching the faceplate with facenuts as was done on the subscale injector. Additional cost reduction
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was realized by attaching the faceplate at only a limited number of element locations, only the number of locations

required for structural integrity. The number of facenuts and fuel sleeves required is thus greatly reduced. Sinct
variable propellant flow areas were not required on the large-scale injector, the fuel flow area of non-auachment--

elements could be controlled by the LOX post and the hole in the faceplate rather than by facenuts.

Analysis of the test data for the 40K subscale injector showed that differential pressures across the

interpropeliant plate and the faceplate were much higher than expected. The maximum AP across the
interpropellant plate was 1200 psi from the fuel cavity to the LOX cavity (at shutdown) and 200 psi from

the LOX cavity to the fuel cavity (at start-up). The maximum Ap across the faceplate was 1200 psi (at

shutdown). Since the fitll-scale injector was originally not designed to take pressures of greater than 300 Ap

a,'ross the interpropellant plate, it was decided to redesign the full-scale injector to handle the larger APs.

Although the full-scale injector was to be tested on a new test stand wY :_h was expected to have better control
over the APs than the subscale stand, the level of uncertainty required the full-scale injector to be able to

withstand greater APs. To increase the P capability across the interpropeliant plate, the plate thickness was
increased from 0.750 to 1.250 in., and the LOX cavity radii was increased, as shown in Figure 3.1.2-3, to reduce

the pressure-limiting stresses. Also since the torch igniter was eliminated from the injector design in favor of a

hypergolic ignher it was possible to make the igniter integral to the injector housing. This not only significantly
reduces cost (the only separate igniter component required is a simple threaded insert at the injector face to

create the hypergol spray pattern) but also allows the center hole size to be reduced and thus the wall thickness

increased. This change can also be seen in Figure 3.1.2-3. To increase the P capability across the faceplate, the

number of element locations at which the faceplate is attached was increased.

As a result of the redesign the new maximum allowable AP across the interpropellant plate at start-up (fror_

the LOX side to the fuel side) was 700 psi, while the new maximum allowable Ap across the interpropellar, __

plate at shutdown (from the fuel side to the LOX side) wasl400 psi. The new maximum allowable Ap across

the faceplate was 1500 psi. These maximum allowable APs are higher than the APs seen in the subscale testing.

At this point the design was essentially the current large-scale injector design.

Lox ThnJSt Load Reaction

 mmHme ]

T__ __CooledFacepgate

_nt_radBon_t
Interprop_lantPlate..-_

Figure 3.1.2-1. Early Full-Scale Injector Cross-Section
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3.1.3 Large-Scale Injector Fabrication History

3.1.3.1 Interpropellant Plate

By far the most challenging detail of the large-scale injector to manufacture was the interpropellant plate

with its 812 integral elements.

After receiving the pancake forging, the interpmpellant plate vendor turned the forging to rough size and
then rough EDM the element posts on both the LOX and fuel sides of the interpropellant plate to about 050

inch greater than their finished diameters. All of the elements on either side of the plate were "gang" EDMed.

That is they were all EDMed together at one time. After rough EDM, the interpropellant plate was stress relief

heat treated to eliminate stresses and movement caused by the removal of a large amount of material from the

pancake forging. A photo of the inter propellant plate after rough EDMing is shown in Figure 3.1.3-1. Figure

3.1.3-2 shows a typical carbon electrode that was used during the rough EDMing of the LOX elements.

However, during the EDM and subsequent stress relief cycles the interpropellant plate experienced radial

shrinkage, effectively moving the outer row elements inward by as much as 0.032 in. and increasing the thickness

across the center of the plate by about 0.015 in. The plate also experienced bowing, making it concave on the
oxidizer side. This alone could have been compensated for within the remaining machining stock envelope, but

the additional movement of the elements due to the radial shrinkage required adjustment of the element pattern

to maintain the dimensional requirements of the element features.

The radial shrinkage was thought to be due mainly to residual stresses resulting from the rapid quench

performed following the forging heat treat cycle. Another factor which may have contributed to the shrinkage

is that the interior of the plate may have spent some time at the precipitation hardening temperature during ___

heat treat cycles at the vendor, which had cool down rates slower than required. INCO 718 shrinks during
precipitation hardening.

The interpropellant plate was subjected to an additional solution heat treat cycle to remove any remaining

residual stresses. A thermocouple imbedded in an INCO 718 plug was inserted into the center hole of the plate

to monitor the core temperature response and ensure that the solutioning temperature was reached throughout

the material thickness. Additional mass used during the previous stress relief heat-treat cycles in an attempt to

flatten the plate was discarded to aid in attaining the maximum cooldown rate possible. Dimensional inspection

afterwards revealed a recovery of 0.010 in. of the radial shrinkage. The element pauem was adjusted to
compensate for the remaining offset of the elements. As a result the rigimesh faceplate hole pattern also had to

be adjusted to compensate for the relocation of the elements.

Following solution heat treatment of the interpropellant plate, a material sample was taken from an element

near the center of the plate. The microstructure of this sample was examined and found to meet all microstructure

requirements.

The vendor that would be performing the gundrilling of the core holes in each element completed drilling

of small INCO 718 samples to establish the process parameters based on tool wear and hole finish, along with a

full-scale steel sample to verify true position of each hole. When this sample was drilled, a subsequent inspection

revealed an error in the element locations as much as 0.007 inch in the outer row. The gundrilling machine

was laser calibrated and the inaccuracy identified as inherent in the machine positioning system. Historically,

gundrilling has not been performed on a part that has required close tolerance control over a large (21-inch

diameter) area, therefore, the deficiency had gone previously undetected. To correct the inaccuracy, a software

compensation package was installed that corrects for the repeatable positional deviation.
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With the compensation package installed, recalibration verified that the required tolerance could be attained. A

second sample plate was drilled to verify the modified hole pattern developed to compensate for the interpropeHant

plate shrinkage. After this sample was received and inspected, The holes in the LOX elements of the actual

interpropellant plate were drilled. Figure 3.1.3-3 shows an overall view of the fuel side of the interpropellant

plate after the gundrilling of the holes in the LOX elements. Dimensional inspection indicated that several of the
holes were drilled outside of the parallelism tolerance allowed relative to the element centerline, with the worst

being 0.015 inch out of parallel from the element tip to the central location of the LOX entry slots. Additionally,

many of the holes were nonconcentric with the element OD It is thought that these gundrilling inaccuracies were

due to a lack of stiffness in the positioning table of the gundrilling machine. The machine flexed slightly when

drilling the deep holes in INCO 718, which is a very tough material. The problem did not show up on the small

INCO 718 samples because it was a large moment created when the outer holes far from the center were drill
that caused the deflections in the machine. The small samples did not have holes far enough away from the

center to have a large enough moment arm to cause a measurable deflection in the machine.

The positions and diameters of the holes and the element ODs were thoroughly inspected and recorded for

each elemenL and the finishing electrode pattern was adjusted to compensate for the concentricity and parallelism
of the holes. There was adequate stock remaining on the element ODs to correct the concentricity, resulting in

wall thickness variations within blueprint limits on all but a small number of elements on the fuel side (only

one of these elements later proved unacceptable for structural and functional requirements). Similarly, there

was sufficient material remaining on the LOX side of the elements such that the final position of the OD of

the post could be adjusted to match the centefline of the element ID at the LOX entry slot location within
defined limits on all of the elements.

The elements were then finish EDMed in two steps to about 0.005 in. greater than the final diameter.

The extra stock was to allow for removal of the recast layer left by the EDM process. These EDM operations

were also "gang" EDM operations where all of the elements on one side of the plate were EDMed at one

time. The interpropellant plate was then chemical milled to remove the recast layer. After chem-milling, the

tight-tolerance diameters, such as the ends of the fuel sides of the elements and the bases of the attachment
elements where the braze joint would be, were hollow milled to the proper dimensions. The gundrilled holes

required no recast layer removal and were masked off during cbem-milling. The thin walled elements on the fuel

side were also masked off during chem-milling since there was not enough extra stock left on these elements

for both chemical and hollow milling.

During the hollow milling of the fuel side elements, damage occurred to four of the fuel side elements.

One element was damaged when the coordinate for the depth of cut was improperly input into the machine

and approximately 0.75 inch of the element tip was cut off. Three additional elements were damaged when an

incorrect coordinate for the positioning of the tool was entered, resulting in damage to the elements, one of which

is an attachment element for the faceplate. After the hollow milling was completed, a crack was discovered in

one of the thin walled elements. The wall at one point on this element was so thin that the hollow miller broke
through the wall. All of the elements were leak checked, and no other wall break-tl'a'oughs were found. The

locations of all five of the damaged elements are shown in Figure 3.1.3-4.

Since the tangential LOX entry slots had yet to be installed at that time, it was possible to remove the

damaged portion of the elements and leave these elements inactive, without affecting the integrity of the one-piece

design. Optionally, brazed replacement elements could have been incorporated at these locations to preserve the

number of active elements, but this would have had a negative impact on the reliability of the plate by including

five prime-reliable joints between the LOX and fuel systems. The effect on injector performance was determined

to be negligible if the five elements were made inactive since the injector would still feature 803 active elements.

The faceplate will not have regular holes installed at the locations of the three inactive non-attachment elements

but instead had a pattern of eight small holes at each of these locations. This pattern of holes hade the same
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effective flow area as a standard fuel annulus on an undamaged element in order keep the fnel distribution the
same as it was before. The one attachment element would receive a fuel sleeve as originally designed, but would

employ a sofid facenut with coolant holes fed from the fuel cavity, and would secure the faceplate through a _
standard hole in the faccplate.

Samples were fabricated to study the EDMing of the tangential LOX entry slots. Samples which simulated

a long row of elements were used to determine the maximum number of element slots that can be "gang"
EDMed simultaneously to reduce processing time and cost, while successfully maintaining the required positional

tolerances. Machine parameters were also determined, along with tooling and electrode requirements. Hgure

3.1.3-5 shows a segment of an electrode used to EDM several slots along a row of elements simultaneously.

To allow in-process evaluation and process control of the EDMing of the tangential entry slots, a waterflow

facility was established at the supplier to evaluate each element for the con'ect Ac_ and spray cone angle.

Waterflow samples were fabricated and tested before EDMing the LOX entry slots of the interpropellant plate
to ensure that the correct machine parameters are set to provide the correct propellant flow rates and mixing

characteristics. These samples were also water flow tested at a P&W flow facility as a check of the vendor's

water flow facility.

After the samples were tested with satisfactory results, LOX entry slots were installed in the twelve elements
in the innermost row (closest to the center), and these elements were water flow tested. The center elements were

done first because these would pose less risk the chamber wall if they were machined improperly. After the water

flow results on these elements proved acceptable, The LOX entry slots were installed in the remaining infield

elements. Because of the hexagonal pattern of the infield elements, a whole straight row of slots in one direction

could be "gang" EDMed at once. This could not be done on the outer row or the inner row since these rows were

circular and had no straight lines. The LOX entry slots in the outer row elements were the last to be installed.

Occasionally during the EDMing of the infield LOX slots, the plate would be taken off the EDM machine

for water flow testing of completed elements to ensure that the slot EDM process was under control. Figure

3.1.3-6 shows a schematic flow testing of the interpropellam plate elements on the vendor flow facility. Some

elements could not be waster flowed. Because of their proximity to other elements, The flow fixture would not

fit over them. In these cases the LOX entry slots were dimensionally inspected to verify that they had the same

dimensions as slots that could be tested and had good water flows. If the slot dimensions of two elements are
the same the flows should also be the same. Thus if an element had slots with the same dimensions as one that

flowed correctly then that element should also flow correctly. The water flows of all the LOX elements proved to

be within acceptable limits. Two elements did have higher than expected flows but this was easily compensated

for by drilling the holes in the faceplate at those locations slightly larger than normaL The resulting higher fuel

flow will combine with the high LOX flow to give the proper mixture ratio.

Because it was thought that the scarfed tips would be too vulnerable to damage, the operation to EDM

the 45-degree angles on the outer row elements was deleted. The interpropellant plate was delivered to P&W

without scarfs but with extra length on the outer row elements so that they could be scarfed as late as possible

after the interpropenant plate was installed into the injector.
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LOX ELEMENT
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PUMP INLET
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Figure 3.1.3-6. Waterflow Setup for the Large-Scale Interpropellant Plate

_,_ 3-18



Pratt & Whitney FR-23116

3.1.3.2 Injector Fabrication

The injectorfuclmanifoldwas conventionallymachined from a forgedINCO 718 ringin theP&W shop.

The fuelsleevesand faccnuts,both made from INCO 718, wcrc purchasedfrom vendors.The firstthreadon

most of thefaccnutswas found to be defectivepreventingthe faccnutsfrom being startedin the fuelslccvc

threads.These facenutswere returnedtothevendorand replacedwithgood facenuts.The igniterinscrlswere

machined from NASA Z copper alloyin the P&W shop.

The injectorhousingwas conventionallymachined from a largeINCO 718 pancakeforginginthe P&W

shop.Afterrough machining,thehousingwas subjectedtoa dimensionalstabilizationheattreatcycletorelieve

any internalstressespresentin the largeforgingand preventany grossmovement of finalfeaturesduring

subsequentoperations.Followingthe stabilizationcycle,a materialsample was takenfrom thecenterof the

housingintheareathatwould have receivedtheleastamount ofwork duringtheforgingprocess,and analyzed.

Microstructuralanalysisshowed thatthe forgingmet thematerialmctaUurgicalrequirementsof grainsizeand

nondissolvcdprecipitatesinthegrainboundaries.Tensilespecimenswere takenfrom thissame sampleand wcrc

testedtoverifythatthemechanicalpropertyrequirementswere met.

The faceplatewas made from I/4-in.thick347 stainlesssteelporousplateidenticalto thatused on the

subscalcfaccplate.This porousplatewas made by sintcringtogethersheetsof wire mesh. Thc platehad a

flow rateof 190 SCFM/ft2 per minute at 2 psig.Because the shrinkageand gundrillingproblems with thc

interpropellant plate moved the injector elements from their proper positions, the faceplate holes had to be drilled
to fit the elements on the interpropellant plate. A concentricity of 0.004 in. was desired between the clement
OD and the faccplate hole ID for even fucl distribution mound the fuel annulus for the non-auachment elements.

Because of the potential for further movement during heat Ireat cycles used in the injector fabrication, it was
decided to wait until after all heat treat cycles were complete before measuring the clement locations. This data

was given to the faccplate vendor to match the faceplate holes to the element locations.

Electron beam (EB) weld samples were run for the fucl manifold to injector housing welds and the

interpropellant plate to injector housing "weld. EB weld samples for the faceplate to housing weld were also run.
These samples were used to establish machine weld schedules and verify proper weld results. The weld joint

samples were X-ray insPected and no voids or cracks wcrc found. Cut-ups of the welded samples revealed small
(0.020-in. long) microfissurcs, just like those found in one of the subscale EB welds. This microcracking is not
uncommon in INCO 718, especially with the AMS 5664 beat treat, and is not considered significant. Fracture

analysis of the welds yielded sufficient life with ample margin.

BeforeEB weldingbegan,theinterproDcUantplatewas nickelplatedinpreparationforbrazingon thefucl

sleeves.Inordertopreventrjickelplatingon thecriticalsurfacesoftheelements,allof theelementswcrc masked

beforeplatingexceptforthebasesoftheattachmentelementswherethebrazejointwas tobe. Alsoinpreparation

forthebrazeoperation,thefuelsleeveswere alsonickelplated,and thebrazeconcentricitytoolswere fabricated.

A pair of INCO 718 lifting eyes were first welded to tbe fuel manifold. Next, the interpropellant plate was

nickelplatedin preparationof the fuelsleevebrazeand thenwas EB welded to theinjectorhousing.Figure

3.1.3-7 shows the interpropellant plate being installed into the injector housing in preparation for the EB weld.

X-ray and fluorescent penetrant (FPI) inspection of this weld revealed no flaws. At this point the instrumentation

conduit was bent to stmpe, installed and tack strapped in place. In order to seal the conduit from the fuel in the

fuel manifold, welds were performed where the conduit tube rnccts the injector housing. The fuel manifold was

then was EB welded to the injector housing, and these joints were X-rayed and F-Pied. Figure 3.1.3-8 shows the
injector after the EB weld of the fuel manifold. Despite masking efforts, a considerable amount of weld splatter

resulted in the LOX cavity and fuel manifold from the EB welds. With much effort from P&W deburr personnel,
the weld splatter was successfully removed, even from hard to get to locations.
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The LOX inlet elbows and flanges as well as the fuel inlet flange, all made from INCO 625, were purchase ,_
from vendors with no major problems. The LOX inlet flanges were first manual tungsten inert gas CTI_
welded to the elbows and then the elbows were TIG welded onto the injector housing. The fuel inlet flange -_

was then TIG welded to the fuel manifold. Fluorescent penewant and X-ray inspections were performed on

all of these weld joints.

The LSI flange locations were dimensionally inspected after final heat treat. Deviations from the Interface
Control Document interface dimensions were caused by excessive weld shrinkage during manual TIG welding.

The deviations were coordinated with NASA-George C. Marshall Space Hight Center (MSFC) and are reported

to be within the "IS 116 experience band.

Braze samples of the fuel sleeve to injector element braze were fabricated and brazed. These samples were

just like those done for the subscale except that they were made to fuU-scale dimensions. The large-scale braze

samples, however, did not have any problems with the concentricity tool bonding to the element like the subscale
samples did because the methods which resolved the problem for the subscale were employed when making

the large-scale concentricity tools.

Because the large-scale braze joints were to be load tested at a much higher load than the subscale (2500
lh versus 150 lb), three of the large-scale braze samples were load tested to failure. All three samples failed at

over 8000 lb. However, none of the three samples failed at the braze joint. Instead they all failed at the fuel
sleeve thread undercut. There was no evidence of damage to any of the brazes. These tests demonstrated that

there was sufficient margin in the braze joint (and fuel sleeve) to perform the load tests safely.

The fuel sleeve braze operation was concurrent with a solution heat treat to stress relieve the weld joints and

was successfully completed with no problems. No concentricity tools bonded to the elements. Subsequent Io_,"

test of all 234 sleeves was successfully completed to verify adequate braze strength.

The injector assembly final precipitation heat treat cycle was completed following the fuel sleeve load

tests. F'mal injector element locations were inspected and documented following the heat treat cycle. Computer

fries of the element locations were transferred to the faceplate vendor to aid in machining the faceplate fuel
annuli holes, An aluminum plate was fabricated by the vendor and successfully fit checked before machining

the facepiate began. To improve the ability to obtain maximum bole to injector element concentricity the

rigimesh outer diameter-to-housing clearance was increased. Consequently a manual weld of the faceplate to

the injector housing was required in place of the planned EB weld. In addition an injector element adjustmem
tool was fabricated to tweak the injector elements if necessary to obtain the required element-to-faceplate hole

fuel annulus concentricity for each element.

Critical bolt holes and seal surfaces were machined after all heat treats were completed so that no movement

of these features could occur during heat treat.

The LSI facenut design was modified slighdy during this period to eliminate the interrupted fuel annulus

outer diameter created by the torque toot slots. Elimination of these wall discontinuities was done to improve
the fuel exit velocity profile. A comparison of the cross sections of the previous and final facenut designs are

shown in Figure 3.1.3-9.

The proof pressure test of the LOX cavity and interpropeUant plate was accomplished by sealing off the

injector elements using the method shown in Figure 3.1.3-I0. A silicone rubber RTV compound was placed in

the elements and allowed to cure. Next a sheeu-aetal ring was placed into the proof pressure test plate and filled

with melted Rigidex tooling wax. Then the injector was lowered onto the proof test plate so that the elemer

sank into the Rigidex. The proof test plate and injector were bolted together, and the Rigidex was allowed ....
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cool off and solidify. Then all instrumentation ports were sealed off and the injector was pressure tested. The
RTV provided the seal, while the Rigide× held the RTV in place and prevented it from blowing out.

At this point, the outer row elements were scarfed to a 45-degree angle with a tool designed to hold a

cutting wheel at the proper angle and at the proper position. This tool was also designed to scarf the outer row

elements at 30- and 15-degree angles as well as cut off the scarf altogether. This tool was designed to be used
at NASA-MSFC during rig testing to change the scarf angle so that the effects of scarf angle on performance

and wall compatibility could be studied.
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3.1.4 Large-Scale Injector Instrumentation

The large-scale injector featured a wide array of instrumentation similar to the subscale to provide data from
which the stability and performance of the injector could be evaluated. Table 3.1.4-1 provides a complete list
of the insmnnentation for the large-scale injector while Figure 3.1.4-1 shows the approximate locations of the
large-scale injector instrumentation. Like the subscale, the large-scale injector the LOX cavity of the large-scale
injector featured 2 static pressure taps, 180 degrees apart, a high response KulJte probe for dynamic pressure,
and a Rosemount RTD (resistance temperature device) for LOX cavity temperature. The fuel cavity featured two
static pressure taps, 180 degrees apart, and two type E thcrmocouples (T/C), 180 degrees apart, for measuring
the fuel cavity gas temperature. The fuel manifold featured two static pressure taps, 180 degrees apart, and
another high-response Kulite probe to measure the dynamic pressure in the fucl manifold. Two type C/A T/Cs

attached to the faceplate (180 degrees apart) measured the faceplate temperature. The large-scale injector also

featured two static pressure taps, 180 degrees apart, to measure combustion chamber pressure (Pc). These taps

were aspirated with hydrogen fuel to prevent them from freezing. All T/C,s and pressure taps routed to the fuel
cavity or faceplate were routed through the stainless steel conduit described in the injector design section.

The high-frequency pressure transducer selected for the large-scale rig testing was, like the subscale the

Kulite model CT-375-5000 for the injector LOX dome and fuel manifold. The Kulites were made by the
manufacturer to P&V_'s length specifications so they could be flush or near flush mounted and had a response

of at least 75,000 Hertz before a five percent amplitude error occurs. The Kulite probes had the advantage of
being able to indicate both the static and dynamic pressures. This model Kulite was deigned for use in cryogenic

temperatures for pressures up to 5000 psi and is compatible with both LOX and hydrogen.

The readings from the aspirated chamber pressure (Pc) probe in the subscale injector faceplate were found
to read consistently lower than the non-aspirated and chamber wall static readings. The reason for the low,

measurements were due to the jet pump effect inherent in the aspirated design. Ejection of the high velocity fu, _-

through the probe orifices creates a suction at the instrumentation tube inlet. This results in a pressure reading
that is lower than the actual chamber pressure. Although an analytical correction was used for the subscale

testing analysis, it was decided to redesign the aspirated probe to eliminate the jet pump effect to give accurate
readings. This was done by drilling the aspiration holes at a 90-degree angle to the probe centerline so that

the hydrogen has no forward velocity when it enters the probe. Figure 3.1.4-2 shows this new probe design.

Because the probe is integrated into and element, it does not have to be attached to the faceplate before the

faceplate is installed. This will save much of the trouble and time lost due to problems installing the faceplate
with insmunentation attached. The faceplate T/C attachment was also redesigned so that the faceplate T/C does

not have to be attached to the faceplate before installing the faceplate.
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Figttre 3.1.4-2. Large-Scale Injector Aspirated Probe

3.2 THRUST MOUNT DESIGN AND FABRICATION HISTORY

The original thrust mount design is shown in Figure 3.2-1. This design incorporated two formed cones with
either one or two longitudinal welds. These cones were to be welded to plates to mount the injector and to
interface with the test stand. Following welding the two end faces would be machined parallel to avoid creating

side loads. The rig assembly using this type of thrust mount is shown in Figure 3.2-2. In an effort to reduce
cost, the thrust mount was redesigned in early 1990 to achieve, essentially, the current thrust mount design. This

design, which is shown in Figure 3.2-3, makes use of more readily available components. This configuration
uses standard plate thicknesses and a rolled cylinder for the main thrust load carrying member. Eccentric loading

is carried by gussets around the main cylinder. It was estimated that the cost of this configuration would be 25

percent that of the original design. The rig assembly using the current thrust mount is shown in Figure 3.2--4.

The deletion of the acoustic liner from the test plan resulted in the addition of 5.5 in.. to the length (to

compensate for the removal of the acoustic liner). The thrust mount assembly with the additional length was
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reviewed for structural capability and was found to be within the margin of safety limits set by NASA-MSF c
Handbook 505A. The combustion chamber support rods proposed in the NASA interface control document (ICL._
will increase that margin by absorbing any vibratory side loads and removing the moment resulting from the

overhung weight of the chamber.

The trust mount was fabricated at a vendor and consists entirely of stainless steel components, which were
conventionally machined and then welded together. After welding, the welds were X-ray inspected, and then the

assembly was stress-relieved before final machining of test stand and injector interfaces. After the thrust mount

was received at P&W it was dimensionally inspected to verify critical interface dimensions. All dimensions were
found to be within blueprint requirements. Figure 3.2-5 is a photograph of the thrust mount during the inspection.

,,_,j : Fu._onWeds Type. --_
_Joa

Mounting Bolts J

I
Machined Plate

_ Inl_ Intetfa_

Test Stand I_

Figure 3.2-1. Original Large-Scale Thrust Mount Design
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Figure 3.2-2. Original Large-Scale Thrust Mount on Rig
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Figure 3.2-3. Large-Scale Thrust Mount Configuration
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Figure 3.2-4. Large-Scale Thrust Mount on Rig
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Figure 3.2-5. Large-Scale Injector Thrust Mount
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3.3 ACOUSTIC LINER

3.3.1 Acoustic Liner Design History

3.3.1.1 Methane Design

During the early phases of the program, methane (Cl-h) was the fuel to be used in the P&W main injector

technology rig. A/though the stabi/ity analysis with methane indicated that the combustion system would be

stable with satisfactory margin, P&W had incorporated an acoustic liner into both the subscale and large-scale
thrust chambers in view of the uncertain nature of combustion stability with hydrocarbon fuels. The liners

were designed using a computer code developed by P&W, and updated with test results obtained under AFAL
Contract 104611-86-C-0115.

The design specifications for both the subscale and large-scale acoustic liners are listed in Table 3.3.1-1.

These parameters were set to achieve maximum acoustic absorption at the first tangential mode frequency and
have adequate chamber wall coverage for stable combustion. Sketches of the subscale and preliminary large-scale

acoustic liners are shown in Figure 3.3.1-6. The predicted acoustic absorption for the subscale and large-scale

acoustic liners is shown in Figures 3.3.1-7 and 3.3.1-8, respectively. These absorption curves were calculated

with the aid of the P&W acoustic design deck (5612). The results of this deck were recently verified by acoustic

test work done on AFAL Contract 1=04611-86-C-0115, "LOX/Hydrocarbon Acoustic Liner Technology Program."

A brief description of how the acoustic liner design parameters were set is given below:

l, Area Ratio D The 0.06 area ratio (acoustic area/total liner area) was set based on past parametric

studies which have shown this value to be close to optimum. Larger area ratios would increase the
required number of acoustic apertures (holes) and the heat transfer to the backing cavity without

any significant improvement to the acoustic absorption.

. Hole Diameter -- The hole diameter was set to be as large as possible within the available

cooling channel land width of the combustion chamber. This minimizes the total number of

acoustic apertures in the liner. Increasing the hole diameter also causes an increase in the acoustic

absorption although this effect is relatively small compared to other factors such as acoustic liner

cavity gas temperature.

. Hole Length -- The acoustic liner hole lengths are set by the cooling channel land thickness

Like hole diameter, increasing the hole length causes a relatively small increase in the acoustic

absorption.

. Backing Cavity Depth -- The backing cavity depth was set to maximize the acoustic absorption
at the first tangential mode frequency 5121 Hz for the subscale and 1395 Hz for the large-scale

charnber. The backing cavity depth has a very strong influence on the frequency at which a liner

has peak acoustic absorption.

, Liner Length -- The liner length was set by a P&W design criteria governing the minimum

acceptable liner absorptivity and chamber coverage for stable combustion. The criteria requires a
minimum liner length of 1/4 the chamber equivalent length (chamber volume - injector area) with

an acoustic liner absorptivity of at least 20 percent at the frequency of interest (first tangential

in STBE).

6. Backing Cavity Partition -- Circumferential partitions are needed in the acoustic liner backing

cavity to prevent hot chamber gases from flowing through the backing cavity due to the combustion ....
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chamber pressure gradient. The partitions were placed to keep the pressure gradient from the first

and last rows of apemums in each acoustic cavity less than 25 psi. Axial partitions which run

the full length of the acoustic liner are also included in the liner at four locations, 90 degrees

apart. These partitions suppress tangential oscillations in the backing cavity which could reduce

liner performance.

Acoustic Liner Placement -- The acoustic liner was placed so that the first row of acoustic

apertures is parallel to the predicted flame front in the combustion chamber. This puts the first
the hole at 0.070 in. from the injector face for this design. This placement will maximize the
acoustic liner effectiveness.

Table 3.3.1-1. Acoustic Liner Design Parameters

Subsmle Large.Scale

Area Ratio 0.05 0.06

Hole Diameter- in. 0.07 0.08

Hole Length - in. 0.23 0.35

Backing Cavity Depth - in. 0.15 0.60

Liner Length - in.* 3.8 4.3

Total Number of Holes 882 2848

* Length from leading to trailing edge of backing cavity

The acoustic cavity temperature is very important to the acoustic liner operation. Temperatures too high can

cause structural distress of liner materials. Temperatures too low can reduce the acoustic liner performance as

seen in Figures 3.3.1-7 and 3.3.1-8. Past tests with acoustic liners have shown the backing cavity temperature

to be primarily a function of the acoustic behavior of the chamber. Temperatures as high as 2000°R have been

recorded in unstable tests while 60(PR temperatures have been recorded in the same chamber during stable tests.
These data suggest that the liner backing cavity temperature will naturally increase until the liner has sufficient

absorptivity to stabilize the combustion process and that the temperature during stable operation should be on
the order of 600 to 1000°R.

To protect the liner from the potentially high temperatures of unstable operation, each liner cavity would

have been purged with fuel (methane). The maximum temperature limit for the wall was set at 15000R and

would have been controlled by the rate of purge. A total flow of 2.0 lb/sec would have been provided to the

subscale liner and 7.4 lb/sec to the large-scale liner. These flows should have provided sufficient purge through

the acoustic apertures to control the cavity gas temperature. Care would be taken during the chamber testing not

to flow too much methane to the backing cavity, which could effectively neutralize the acoustic liner absorptivity

and cause unstable operation. To determine if a methane purge is necessary, instrumentation would be added to

the liner to monitor its temperature. Thermocouples placed in the acoustic cavities would measure the cavity gas

temperature and back wall temper'anne. In addition, a pressure measurement would be taken near the first and

last rows of acoustic apertures to measure the axial pressure gradient across the liner.
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Figure 3.3.1-8. Full-Scale Acoustic Liner Predicted Acoustic Performance

3.3.1.2 Hydrogen Design

When the liner was originally designed for operation with methane, the backing cavity was approximately

0.600 inch deep to provide the minimum of 20 percent absorption at the first tangential acoustic mode with

combustion gases in the backing cavity. When the change was made to run with hydrogen the liner response
was reevaluated. Since the P&W baseline STE did not include a stability device, it would have been desirable to

operate the large-scale test article with the acoustic liner ineffective. With the backing cavity set at 0.600 inch i(

was not possible to detune the liner to drop its absorption to a very low (<5 percent) level. To be able to detune the

liner the backing cavity depth was reduced to 0.300 inch. The target absorption of 20 percent can be attained by

purging the cavity with nitrogen or allowing combustion gases to fill the cavities. To detune the liner, the cavity
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can be purged with hydrogen. This wig provide the capability to run with and virtually without a stability aid.

The response of the acoustic liner with these three media in the backing cavities is presented in Figure 3.3.1 -°

The temperature of the acoustic cavities during steady-state operation were evaluated to determine the

capability to detune the liner to reduce its absorptivity by lowering the cavity gas temperature. In addition, the

cavity gas temperature with no steady-state purge was reviewed. The acoustic liner was designed to operate
effectively when running with Oz/CH4 and with a CI-h purge to control the backing cavity gas temperature and

acoustic absorptivity. Among the objectives of the subscale testing was an evaluation of the chamber heating

rates and demonstration of performance. With the backing cavity purge active, additional gas would be introduced

into the chamber, affecting the chamber heat transfer by establishing a film coolant along the upper part of the

chamber;, performance would also be affected by adding fuel (or if N2 is used, an inert gas) that would not fully

combine in the combustion process. For the CH4 testing, this would be a true demonstration of what would

be expected in the large-scale design; however, for the H2 testing it was expected that an acoustic liner would

not be needed, thus it was necessary to determine chamber heat rates and combustion performance without the

purge. Analyses were performed to determine what the acoustic cavity gas temperature would be without an
active purge. Analyses were also performed to determine the effectiveness of the liner for the H2/O2 testing

should a stability device be needed.

The acoustic cavity would have experienced recirculation of combustion gases when the liner was operated

without a purge due to the axial static pressure gradient created by heat addition from combustion. To minimize
the hot gas recirculation the liner is compartmented axially with circumferential partitions. The forward section

of the liner, which would experience the highest axial static pressure gradient, had only one circumferential row

of apemaes per partition, which prevents hot gas recirculation, since inflow and outflow would have to occur

in the same aperture. The liner was partitioned so that no section with two or more rows of apertures woul,'

experience more than 25 psi axial static pressure gradient, thus limiting the recirculated hot gas mass flow. Wi
these restrictions the acoustic cavity gas temperatures was calculated to be 1580°R with H2/O2 combustion when-

there was no active purge. This temperature level would not create a thermal problem in the cavity back wall
because of the low film coefficient ass_iated with the low flow rate of the recirculated hot gas. The resulting

back wall temperature for the expected eight second firing was 313 ° F which was below the design temperature

of 5000F. This acoustic cavity temperature level improves the acoustic absorption effectiveness of the liner,

(i.e., the higher the acoustic cavity gas temperature, the higher the acoustic absorption). With H2/O2 combustion

products, the acoustic absorption coefficient of the liner should have exceeded 0.2 for all frequencies above 1500

Hz with no active purge. With an active He purge the acoustic absorption coefficient would be 0.12, which is not

adequate for effective acoustic damping. With an active GN2 purge the acoustic absorption coefficient exceeded

0.2 for all frequencies above 2300 FIx, because the higher molecular weight of the GN2 (compared to He) greatly

improves acoustic absorption. The calculated first tangential instability frequency for the subscale H2/02 testing

was 5100 Hz, thus the acoustic liner could have been functional during this testing.

During the cool down period, the spoolpiece was expected to be exposed to full coolant pressure without

any chamber pressure. For the purpose of the design, it was assumed that the liner would be subjected to a

coolant pressure of 6300 (dead headed supply pressure) and a temperature of-75°F before test article ignition.

This provides the worst case differential pressure across the coolant passages and crossover a_'eas. The resulting

area of maximum stress occurs at the interface to the NASA-supplied chamber. On this side of the spoolpiece
Rocketdyne had incorporated a gap which was used to supply film cooling to the combustion chamber. With

this gap, the spoolpiece had to be fully self supported to limit deflection into this gap. The need to support the
crossover area made necessary the use of extended ribs in the NASA Z liner to limit the deflection. During

steady-state operation, the differential pressure between the coolant path and the combustion chamber wou 1

have been low and stresses reduced to very low levels. At the injector end, the spoolpiece would be supporte,.
by the injector body and no deflection would occur.
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Maximum thermal stresses would also occur during test article cool down. At this time coolant is flowed

through the liner to condition it before test article startup. This cooldown period causes the liner to achieve

a temperature of-75F minimum while the structural shell is assumed to be near ambient temperature. This

temperature differential would produce strains at each end of the liner where it would be welded to the structural
shell. With the rigidity needed to achieve acceptable pressure induced stresses, there would have been be some

local yielding of the liner at the attachment points. This was not considered a problem since the strain was
limited and the resulting low-cycle fatigue (LCF) life was high.

When the possibility of running hydrogen, as well as methane, arose, it was considered desirable to deactivate

the acoustic liner during the hydrogen tests. Therefore, a method to physically block the acoustic cavities during

the hydrogen testing was investigated. Since it was desirable to be able to return the liner to its original

functioning configuration, a configuration was considered which would incorporate a removable liner that could

be insertedintothecombustionchamber. Materialsthatwere consideredarccarbon/carbon,siliconphenolicand

quartzphenolic.Itwas believedthatthe ablationrateof thesematerialswould be sufficientlylow to permit

obtainingsteady-statedatawith the aperturesphysicallyblocked.Since thismethod would have entailedsome

riskdue to uncertaintiesin the thermalmismatch and ablationrates,itwould only have been consideredifit

was shown thatthe linercould notbe made ineffectiveby coolingthebackingcavitygas temperaturetoreduce

the acoustic absorptivity.
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Figure 3.3.1-9. Effect of Purges on Acoustic Liner at Rated Power
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3.3.2 Acoustic Liner Fabrication Plans

3.3.2.1 Subscale

Figure 3.3.2-I presents the detail of the subscale acoustic liner configuration. As shown, the acoustic liner
cavities are formed into the elecU-oform construction of the acoustic liner section of the combustor would have

required the installation of 882 acoustic apemaes, the acoustic cavities, and coolant crossover passages while

maintaining the integrity of the water coolant passages in the copper liner. A flat pattern of a section of the
acoustic liner showing these features is presented in Figure 3.3.2-2. The planned method of construction is

presented in Figure 3.3.2-3. Fast the cooling passages in the copper liner would be machined and the acoustic

apertures would be installed. The passages would be filled with a compound (i.e., wax) to permit conventional

electroform closet of the coolant passages, and non conductive pins would be installed into the acoustic apertures.

Then, the entire liner would have nickel deposited to a thickness just beyond that required to form the acoustic

cavities (approximately 0.200 inch). Next, the acoustic cavity features would be machined into the nickel leaving

the cavities, water crossover pads and partitions. The pins would be removed from the acoustic apemaes at this

time and, following completion of machining, the acoustic cavities would be filled with a compound to permit

final closeout of the acoustic cavities and forming of the structural shell. Coolant passages to the liner channels

and the interface for the coolant tubes would then be machined. An option for machining the coolant passages

aRer the initial elecu'oforming is also being considered.

3.3.2.2 Full Scale

Severalmeetings were held to coordinatethe fabricationof the acousticlinerspoolpiece.These meeti

wcrc attendedby representativesfrom AnalyticalDesign, Mechanical Design, Drafting,Manufacturing,a,_

ProjectEngineering.This team performed complete reviewsof thedetaildrawings to assurethatpartscould be

made within existing manufacturing capabilities and meet the design intent. As a result, much more manufacturing

information was incorporated into the drawings to facilitate the actual fabrication, and more consideration to

dimensional control was given to avoid unnecessarily tight tolerances and subsequent quality review activity.

This early coordination was to minimize problems during the fabrication process.

Constructionof the full-scaleacousticlinerspoolpiccewould followthe same procedureas the process

describedfor the subscalcacousticlinersection.The configurationof the full-scaleacousticlinerspoolpiccc

is shown in Figure 3.3.2-4.

Machining of the liner was to be accomplished at P&W using information gained in an IR&D effort

to optimize machining of NASA Z for combustion chambers. A Taguchi statistically designed experimental

approach was taken to vary speed, feeds, depth of cut, cutter type, and other key machining parameters to

optimize dimensional control, surface finish, and machining time.

The resultsof thisexperimentarc being analyzedand willbe appliedtothe machining of thisliner.

3.3.2.3 Elimination

Afterthefuelselectionwas switchedtohydrogen (H2), theriskof combustion instabilitybecame so miniI,.r_

thatthe subscalcacousticlinerwas deemed unnecessaryand dropped from the program.
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4. a. Fill
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5. a. Install Coolant
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1. a. Machine Liner
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Figure 3.3.2-3. Subscale Acoustic Liner Construction
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Figure 3.3.2--4. Large-Scale Acoustic Liner Spoolpiece

3.4 TEST SUMMARY

The large-scale injector task was tenninamd before testing of the hardware described in the preceding

sections and therefore this section is blank.
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SECTION 4.0
NOZZLE SKIRT FABRICATION TRIALS

The nozzle skirt fabrication demonstrations support the STME Phase B Preliminary Design (Contract

NAS8-38170).

The objective of this program is to provide demonstration of key fabrication technologies that offer the

greatest potential for developing a robust, highly reliable, low-cost nozzle skirt. The skirt fabrication trials

provide the initial demonstration required to assess the feasibility in achieving these objectives.

The fabrication demonstrations are structured around a two-phase approach consisting of a process

development phase (Phase I) and a large-scale verification phase (Phase ll). Nondestructive testing and mechanical

properties testing are used in conjunction with the manufacturing producibility results to aid in the selection of

the optimum fabrication method.

Phase I uses flat samples representing the various fabrication techniques, two of three materials (INCO 625,

Haynes 188, Haynes 230), and two tube geometries (round and square) for evaluation in assessing their relative

abilities to provide a process that can support the program objectives of high reliability and low cost. Each of the
fabrication method trials uses statistical design of experiments (DOX) matrices based on Taguchi methods where

applicable to reduce the overall number of experiments required to evaluate the large number of independent

variables involved. The objectives of Phase I are as follows:

Address all major technical concerns of each manufacturing method

Identify process related sensitivities

Select the alloy most suited to each manufacturin, g method

Assess the impact of the tube geometry on each process

Identify viable inspection techniques

Assess repairability

Establish accurate cost estimates for each method.

Nondestructive (NDT) test methods were employed where applicable to assess fabrication flaws, both

naturally occurring and induced, and identify viable inspection techniques, such as X-ray, fluorescent penetrant

inspection (FF'I), and ultrasonic inspection. Mechanical properties of the materials and the bond joints will

be evaluated using tensile and fatigue testing methods, while metallographic cross-sections will be prepared

and evaluated using conventional light microscopy, scanning electron microscopy (SEM), transmission electron

microscopy (TEM), and microprobe mass spectrometry where applicable.

Figure 4-1 illustrates the various fabrication methods investigated. These are divided into two basic

categories:

Tubular concepts

w Inflation formed/diffusion bonded (IF/DB) tubes

-- Hypervelocity oxygen/fuel spray (HVOF) jacketed tubes

m Brazed tubular assembly

O Sheetmetal concepts

Explosive formed/welded convolute (EF/W) sheet
Welded/inflation formed (W/IF) sheet

Diffusion bonded/inflation formed (DB/IF) sheet.
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Following the completion of Phase I, two to three of these methods were to be selected for further evaluation

in the Phase H portion of the program. Based on the downselect criteria presented in Figure _-2, one sheetme" '
fabricationmethod and atleastone tubularfabricationmethod was to be selected.The brazedtubularmetl

willalsobe included,ifitisnot downselected,forriskmitigationsincethisiscurrentlythe standardmethod

of nozzlefabrication,of which P&W has over thirtyyearsof RLI0 experience.Only the optimum materialfor

each method was to be selectedforcontinuedevaluationbased on bond strength,mechanical properties,and

metallurgicalcondition.One tube"geometry (roundor square)was to be selectedforeach method based on the

abilityto obtainthe desiredform withinthe designand costrequirements.

The Phase IIportionof theprogram thenproceedsto assessthe large-scalerelatedprocesscapabilitiesand

sensitivitiesof each of the downselectedfabricationmethods. Full-lengthpanelsat leastI0 to 20 tubeswide

and a large-diametershortcylinderwillbe fabricatedand bonded accordingto theprocessdevelopedinPhase I.

Inspection and repair methods established in Phase I will be validated on flaws induced in the test panels,
and cross-sections wig be taken through some sections of the panels for metallographic inspection. Conceptual

designs of the tooling required for a full-size nozzle will be supplied to assist in the selection decision for the

STME nozzle design. Following the completion of Phase II, the optimum fabrication method was selected for
the STME nozzle design. Depending on the technical and programmatic risks, the brazed tubular nozzle may

be dropped or carried forward for risk mitigation.
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TUBULAR CONCEPTS

Inflation Formed/Diffusion Bonded Tubes (IFIDB)

=___-'_ _-"1__-'_ _-_ _-'_ _-'3_

Hypervelocity Oxygen Fuel Spray Jacketed Tubes (HVOF)

_\\\\\\\\\\\\\\\\\\\_

Brazed Tube Assembly

SHEETMETAL CONCEPTS

Explosive Formed/Welded Convolute (EF/W)

Welded

Welded/Inflation Formed (W/IF)

i _" _" _" _" "_'J Inflation =-

Formed

Diffusion Bonded/Infletion Formed

Inflation
Formed

Figure 4-1. Fabrication Technologies Selected .for Nozzle Skirt
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4.1 NOZZLE SKIRT FABRICATION TRIALS m PHASE I

4.1.1 Tubular Concepts

4.1.1.1 Inflation Formed�Diffusion Bonded (IF/DB) Tubes

Figures 4.1.I-I and 4.1.I-2 illustrate the tooling concept used to perform the experiments. Tooling and

raw materials were sent to P&W Development Operati0ns-North, where the experiments were performed. The

vacuum press to be used in the process was capable of providing pressures in excess of 2000 psi. Initial trials were

performed at the maximum pressure, temperature, and time variables to determine the feasibility of the process

for each material, followed by parameter optimization using a statistical design of experiments (DOX) matrix.

The first IF/DB trial was completed, using the Inconel 625 round robes. The sample is shown in

Figures 4.1.1-3. The trial was successful, with substantial inflation forming and tube bonding occurring during

pressurization to 1500 psi and 2150"F. However, due to a leak in the tooling sample, the scheduled pressurization

cycle was not completed to the maximum pressure of 2000 psi.

The tooling plates, shown as the thicker sections on the top and sides of the tubes, were not originally

intended to bond to the tubes but rather to form a shell to create square tubes. A release agent was applied to

the tooling inner walls before assembly to prevent tube bonding to the tooling plates. The effectiveness of the

release agent was poor, resulting in substantial bonding of the tooling to the tubes. Based upon these results,

other release agents are being tested to prevent future unintentional bonding.

Upon microscopic examination of the IF/DB sample bond joints, it was noted that carbides had formed on the

bond lines. The presence of these carbides may result in a strucairally inadequate bond joint and are not desirable.
Various heat treatments are being investigated to limit or prevent the formation of carbides in future tests.

Examination of the tube cross sections also showed that slight cracks occurred on the tube comer inner

radius. The comer area experiences the highest total strain during the forming process and is therefore the

most susceptible to failure during the high pressure and temperature forming environments. After microscopic

evaluation, it was found that the minute cracks were due to Inter-Granular Attack (IGA) on the inner walls due to

the presence of air (an oxidizing atmosphere) inside the tubes during the forming process. The cycle procedures
are being adjusted to prevent atmospheric contamination during the forming process by purging the tubes with

an inert gas and evacuating the volume before subjecting the sample to the high pressures and temperatures.

Based upon this single IF/DB process, several design improvements were incorporated into the remaining

test samples to prevent similar problems.

A parallel effort was undertaken that will offer significant benefits in terms of reducing tooling, raw material

and complexity. This similar process makes use of a Hot Isostatic Pressure (HIP) facility, wherein the tubes and

sheetmetal jacket are placed in a tool with reduced wall thicknesses. The sample is evacuated to remove any
air between the tubes/sheetmetal and the tool walls, and welded to create a vacuum between the tubes and the

tooling. The sample was placed in a HIP furnace, where it was brought up to pressure and temperature in the

same manner as the IF/DB process. Because the entire fum_e is held at the high pressure, the tubes are formed

square against the structural jacket and the tool walls at temperature.

Both the IF/DB process and the HIP forming process described above were also tested using preformed

square tubes. Since the preformed square tubes will undergo significantly less strain in the forming process

than using round tubes, better material properties can be achieved at reduced forming pressures for producing

the same final design.
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The first IF/DB samples using the HIP furnace were successfully completed with round Inconel 625 tubes.

The first two samples are shown in Figure 4.1.1-4. The fight sample was formed in a HIP furnace held

2100°F and I%000 psi.The extreme pressure,which isthe maximum pressureavailablein thatfurnace,w,,..-

used to ensurebonding was achieved in the tint trial.Due to the pressureactingon allsidesof the sample,

the sheeunetalsimulatingthe jacketand the thintooling deformed inward on the tubesbeforethe robesfully

expanded. The leftsample was inflatedat 2100°F and 5000 psi. Similarinflationforming and bonding also

occurred at the significandylower l_ressure.Both of these samples were screeningtrialsintendedto gather

sufficientknowledge to design a more thorough testmatrix.

A screeningtrialusing preformed squareHaynes 230 tubes was completed at 2100°F and 17,000psi in

a HIP furnace.In thistrial,green "Stop-Off"was paintedon the sidesof the robesto preventtube-to-tube

bonding. The sample was successful,inthatonly tube-to-jacketbonding occurred,as shown in Figure4.I.I-5.

The sample was intentionallybent to clearlyshow thatthe sidesof the tubes were not bonded together.The

conceptforusingnon-bonded tubesiscurrentlybeing strucum_y analyzedfor thefull-scalenozzledesign.It

offersthe potentialforreduced tensilestressesin the tube innerwallduringnozzlecooldown by allowingthe

hot wallof the tubetofreelycontract.In the robe-to-jacketareasof thissample,fullbonding was achieved.

The nextscreeningtrial,shown inFigure4.1.1--6,used round Inconel625 tubesat2100°F and 3000 psiina

HIP furnace.Tl_s trialalsoused tooling'"uags"ratherthanthe thickertoolingplatesthatareused in theIF/DB

trialsperformed in a standardfurnacewith an externallysuppliedpressurizationsource.The bags are actually

thinsheeunetalenclosuresdesigned only to hold a vacuum between the tubes and between the tubes and the

sheetrnetaljacket.In thissample,fulldiffusionbonding was achievedalthoughsomewhat lessinflationformi

than inthe higherpressuresamples due tothe bag configuration.This typeof arrangementactuallyallowsu,,,--

tubeinnerwalltoretaina somewhat rounded shape,which would be desirableina regenerativelycoolednozzle

configuration.Partof the toolingbag has been includedin the figureforclarity.

A fifthscreening_al usinground Inconel625 robeswas conductedat2100°F and I000 psiina HIP furnace.

This sample isshown inFigure4.I.I-7 and isdirectlycomparable tothe samplesinFigure4.I.I--4.At the HIP

furnace pressure of I000 psi, significant bonding and inflation forming was achieved. The lower pressure did

not createfullysquaretubes,and a smallgap isleftbetween the tubewallsatthe sheetmetalinterface.

The resultsof theseinitialscreeningtrialswcrc used todesigna more thoroughtestmatrixfortheremainder

of theIF/DB HIP fabricationsamples.Each of thethreematerials,usingpreformedsquaretubes,willbc tested

ata range of pressures.To demonstratemore closelythefull-scalenozzleconfiguration,therearetwo geometry

configurationsthatwere used. The first,shown as ConfigurationA in Table 4.1.I-I,was intendedto simulate

the tube geometry at the forward sectionof the nozzle by placingthe wide sectionsof the tubes together.

ConfigurationB isintendedto simulatetherobegeometry attheaftsectionof thenozzleby placingthenarrow

sectionsof thembcs togcr.her.For allmaterialsand geometries,both masked and unmasked samples were tobc

run toverifythe abilityto preventbonding bctwccn the tubes.Tables4.I.l-l,4.1.I-2,and 4.I.I-3 show the

sample configurationsselectedfor each of the candidatematerials.
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Table 4.1.1-1. Inconel 625 _ 25 Samples

Configuration A Conflguration B

Pressure (psi) 8 Masked 5 Unmasked 8 Masked 9 Unmasked

7000 2 2 2 1

3000 2 I 2 1

1000 2 1 2 1

500 2 1 2 1

Sheet

Metal Configuration A

Jacket -_

Configuration B

Table 4.1.1-2. Haynes 230 _ 13 Samples

Sheet

Metal

f Jacket

Tube

12242

Conflgurmion A Configuration B

Pressure (psi) 4 Masked 3 Unmasked 4 Masked 2 Unmasked

7000 1 1 1 1

3000 1 1 1 1

1000 1 1 1

500 1 - 1

Table 4.1.1-3. Haynes 188 _ 12 Samples

Configuraffon A Configuration B

Pressure (psi) 4 Masked 2 Unmasked 4 Masked 2 Unmasked

7000 t 1 1 1

3000 1 1 1 1

1000 1 1 -

500 1 1 -
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All of the test matrix samples underwent weld repairs to fix cracks found in the perimeter welds. These

cracks were due to the use of tooling materials with a larger coefficient of expansion than the tubes. The samp'

were reworked and welded to repair the existing cracks, and a sheetmetal '1_ag" that is made of the same matex ....

as the tubes was welded to the existing tooling to encase it and hold a vacuum. Neither the samples nor the

process demonstration was adversely impacted by this revised configuration.

Manufacturing planning for the full-scale nozzle has showed that tooling costs can be greatly reduced by

providing thinner section tooling. This thinner section tooling can be achieved by the use of a pressurized furnace
rather than the inner tube walls pressurized in the furnace from an external source. Using a HIP furnace, the

space between the tubes and the sheetmetal jacket or tooling can be evacuated before placing the part in the

furnace. Because the pressure is acting on all sides of the part, the tooling is not required to act as a pressure

vessel but only to hold the vacuum and retain the finished shape of the part. In the standard IF/DB configuration,

the pressure inside the tube walls used to inflate and bond the tubes is provided from a source external to the

fammce. The tooling is thus required to hold the pressure and is significantly larger. The cost advantage of the

tooling appears to outweigh the cost differential between the HIP furnace and the standard furnace.

Based upon these full-scale nozzle manufacturing studies, the remaining IF/DB trials were conducted using

the HIP furnace. Since the bonding and inflating processes are essentially the same, the HIP samples demonstrate
both methods of IF/DB.

Additional IF/DB samples using the HIP fiLmace (HIP-IF/DB) were successfully completed with round

and square Inconel 625, Haynes 188, and Haynes 230 tubes. These samples were run at a range of pressures

as discussed in the test matrix (Table 4.1.1-I). Figure 4.1.I-8 shows a successful Inconel 625 HIP sample°

This sample was processed at 7000 psi, and the tubes were unmasked to form a tube-to-tube bond as well as
the tube-to-jacket bond. Figure 4.1.1-9 shows a HIP sample that was processed at 3000 psi with the tul"
unmasked. Both of these samples show both forming and bonding, and used preformed square tubes. Figu._
4.1.1-10 shows a HIP sample of Incone! 625 tubes that was processed at the relatively low pressure of 500 psi,

with the tubes intentionally unbonded. This sample had experienced contamination due to inadequate cleaning

procedures and masking techniques.

Figures 4.1.1-11 and 4.1.1-12 show Haynes 230 samples that used preformed square tubes and were bonded
at 3000 psi. The microcracks in the tube radii are evident at the outside corners and are due to high total strain

rate during forming. In the first sample, the tubes were unmasked to form tube-to-tube bonds. In the second

sample, the tubes were intentionally left unbonded.

The test matrix samples were fabricated durillg the previous reporting period, and some of the samples

underwent weld repairs to fix cracks found in the perimeter weld, However, several of the samples were run

in the HIP furnace before the tooling thermal coefficient of expansion mismatch was found to be a problem.

These samples were irreparably damaged and thus no significant forming or bonding occurred before the samples

leaked. Of the samples that had not yet been run before the crack problem was discovered, all of the Inconel

625 samples were repaired by reworking and rewelding the material, and a sheetmetal bag made of the same

material as the tubes was welded to the existing tooling to encase it and hold a vacuum. Neither the samples

nor the process demonstration were adversely impacted by this revised configuration. The remaining Haynes 230

and Haynes 188 samples were not repaired because the material downselect decision to Inconel 625 had been

made and there was no need for further Haynes 188 test samples.

The results of the metallographic testing have been completed for several of the previously completed IF/DB

samples. Figure 4.1.1-13 shows the sample cross section at the bond locations and tube corner radii of an Inco,

625 sample that used preformed rectangular tubes and was HIP-IF/DB processed at 7000 psi and 2100°F. "l._j

photo shows several microcracks at the tube inside corner radii, which were caused by oxides that had formed
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at the metal surface due to an impure furnace gas environment. Since the presence of oxygen was confirmed

during the chemical analysis, and also because no cracks are found in the tube outer walls, the cracking is not
an indication of Inconel 625 strain rate or total strain sensitivity to the process.

figure 4.1.1-14 shows the same Inconel 625 sample, at the bond locations. The mhe-to-tube bond appears

to be somewhat better than the robe to jacket bond, although both bonds contain oxides and voids along the

bond lines. The oxides also show some indication of penetration into the base metal, which was caused by either

particle contamination (din or oil) or air trapped between the surfaces. The uniformity of the oxides suggests

that they most likely arose from a nonvacunm condition. Note that once base metal oxides are formed on either

mating surface, the diffusion bond cannot occur. In addition, oxides cannot be diffused out of a nickel-based

alloy (unlike titanium alloys), and therefore must be completely removed by chemical cleaning before the bond

cycle and prevented from forming during the bond cycle by removing all air. Once a pan is satisfactorily

cleaned, however, it can remain free of oxides throughout the handling and processing, because clean nickel

alloys will not form oxides at room temperature conditions. Hgure 4.1.I-15 shows an etched photograph of

the same sample, which shows the carbides present in the base metal and at the bond locations. Many of these

carbides are naturally occurring in the nickel-based alloy, and can migrate to the surface of the metal during

the high-temperature processing. Some of these secondary carbides may precipitate back out of the base metal

with sufficient time at the high processing temperature. Other types of carbides, some of which are not normally

found in the base metal, may be formed when contamination such as din or oil comes into contact with the base

metal. These primary carbides will stabilize in the presence of oxygen, and therefore will not precipitate out of

the metal. Based upon these results, further analysis was performed on additional samples to determine the type

of carbides present at the bond locations to see if they came from the base metal (which is not preventable).

At the highest diffusion bonding pressure of 17,000 psi, the tube-to-tube and tuhe-to-jacket bonds show
similar characteristics, as shown in Figures 4.1.1-16 and 4.1.1-17. Figure 4.1.1-16 indicates that the bond

location and base metal was more severely affected by the environment, most likely due to the higher pressure

causing greater diffusion of oxides into the part, as well as oxygen stabilized carbides. Figure 4.1.1-17 shows

a network of concentrated, continuous carbides that most definitely indicates contamination was present. The

extent of carbides is not affected by the degree of processing pressure.

Figure 4.1.1-18 is a photograph of Inconel 625 tubes that were bonded at 7000 psi and 2100*F. The lack of

cross-grain growth at the tube to tube boundary indicates that a longer bond cycle may help recrystallize grains

and improve bond characteristics. There is also some evidence that the amount of metal deformation at the bond

location may have excellent grain size characteristics (ASTM 6-8) that are actually better than the tuhe metal
grain size before the I-I/P-IF/DB processing. The longer diffusion bonding times proposed in this report will

likely cause the base metal grain size to become larger, which adversely impacts material properties.

Figure 4.1.1-19 shows the results of a HIP-IF/DB sample that was heat treated at 2150"F for 2 hours with a

fast cool, following the IF/DB process cycle. The purpose of the subsequent heat treat was to see if the carbides

at the bond line were reduced by precipitating out of the metal. There was, however, no change from the original

metallographic analysis, which indicates that the presence of oxygen had stabilized these carbides.

One of the early Haynes 230 samples, which was HIP bonded at 3000 psi and 2100*F, is shown in Figure

4.1.1-20. The tube outer walls were severely damaged by the forming process, which is similar to the results

found in the Haynes 230 sbeemaetal forming processes. The sample was analyzed for the presence of oxygen

(which can accelerate cracking) but was found to be free of oxygen. The Haynes 230 material is obviously

very sensitive to total strain or strain rate during the forming process, and therefore less robust for this type

of fabrication process. Figure 4.1.1-21 shows the same sample, etched to reveal grain size, structure, and

the presence of carbides at the bond lines. These carbides are most likely due to the contamination problems

experienced during fabrication and processing.
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Based upon the above results and previous samples, several significant processing lessons learned have

been incorporated into Fabrication Trials Phase II planning and full-scale nozzle manufacturing master plann__
These lessonslearnedare listedbelow:

Processing Parameters n A processing temperature of 2100 to 2150°F was used for the test matrix samples.

This temperature has been shown to allow substantial forming, and some bonding of the tubes. Since 2100°F

isa relativelyhigh temperatureforany thermalprocessing(equaltothe heattreattemperatureof Inconel625),

furtherstudiesshould includewhether lower temperaturescan produce the same good forming and bonding
results,and what cffcc_ itmay have on graingrowth and carbideformation.

A processingtime of 6 hours was used for allsamples in orderto allowfor a directcomparison between

samples at differentpressures.The 6-hour time allowed for some bonding to occur at the pressuresof 3(XX)

psi and higher,but the lower pressuresamples had poorer bond quality.Additionaltime at the processing

tempcranm: and pressurewillprovidebetterbonds,but willadverselyaffecttoolingcreeplifeand base metal

grainstructure.Longer processingtimes may be furtherinvestigatedto understandthe extentof improved
bonding versusdecreasedtoolinglifeand grainstructurc.

Pressuresof500, I000, 1500,3000,5000, 7000,and 17000 psihave been used intheIF/DB and HIP-IF/DB

fabrication trials. The highest pressures provided the greatest tube forming and bonding, with pressures greater
than5000 psigivingroughly similarresults.The squarenessof the tubesat the higherpressuresisnot desired

from a structuralstandpoint,because the sharpercomer radiiinthe tubewillhave a higherstressconcentration

than a smooth comer. However, the sharperoutsidecomer providesgreaterbonding surfacefor the tube-to-

jacketbonds. Because the lower pressures(lessthan5000 psi)providetlmmore desirablerounded cornertube

geometry and offerreduced thicknesstoolingfortheIF/DB and reducedfurnacepressurerequirementsforboth

the IF/DB and the HIP, furtherfabricationsamples should focuson investigatingprocessingpressuresin ""
I000 psi to 5000 psi range.

Surface Condition _ General cleanliness requirements for fabricating the samples proved to be of significant

importance. Several contaminates were found in the processed samples, which included residue from the tape
used to mask the jacket side of the tubes when stop-off was applied to prevent tube-to-tube bonds. The HIP

furnaceundoubtedly has an impure environment (presenceof oxygen in the furnaceinertgas),which causes

oxidesto form atthebond surfacesand preventsbonding of theparts.The relativelysimplecleaningprocedures

initiallyused willnccd to be modified to more stringentcleaningproccdurcstochemicallyremove alloxides,

dirt,oil,and othercommon manufacturingfacilitycontaminates.

Release Agents _ The green stop-off that was used to prevent bonding of the tubes to thc tooling and to each

other worked well. The possibility of contamination to the bond surfaces from the outgassing of this release agent
should be determined. In addition, the ability to mask the tubes with the release agent without contaminating
the bond surfaces (due to the residue left from the masking tape) should be examined. As illustrated in Figure
4.1.1-10, the tube was masked with tape and then covered with the release agcnL The tape was removed when
the release agent dried, and wiped clean with alcohol. The tape residue appears to have contaminated the surface,
as indicated by the yellowish hue, and alcohol does not seem to adequately remove this residue.

Additional Samples for IFIDB and HIP _ To answer some of the remaining processing, cleaning, and

environment concerns, additional small scale tubular HIP and IF/DB samples will be fabricated. These samples

will be used to finalize the Phase II subscale nozzle processing parameters, minimize contamination problems,
and optimize the bonding and strength of the bond joint. In addition, simple tensile tests will be conducted on

existing samples as well as the additional samples to characterize the strength of the bond joint. Concurrer

full-scale nozzle design and analysis will establish limits for bond strength and bond coverage to determine
minimum acceptable conditions, v

1"
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Laboratory diffusion bonding experiments were conducted to determine the capability for Inconel 625 to

diffusion bond both with and without special preparation procedures. As discussed in the previous bimonthly

report, many of the small tubular diffusion bonded samples contained oxides and carbides at the bond locations.

This laboratory study was undertaken to determine the best possible bond joint, using nickel plating, descaling,

or chemical milling preparation procedures.

The samples used mating AMS 5599 (lnconel 625) sheetmetal 0.02 in. thick samples, approximately 2 x 2

in. size. Three specimens were run in a 100 ton vacuum press at 10-4 Tort" vacuum level using a 19000F bond

temperature with a 5000 psi pressure applied for 6 hours. The 1900*F bond temperature was selected to avoid

grain size coarsening during the diffusion bond cycle, which indicates reduced parent material properties.

The three sets of samples were prepared using standard production methods for diffusion bonding. The first

set of samples received approximately 0.0002 in. thick nickel plating on both mating surfaces. A second set

was descaled using a standard descaling procedure, which includes a hydrochloric acid solution and a caustic
potassium permanganate descaling solution. The third set of samples was cleaned using a standard chemical

milling procedure, which involves using several different acids in solution.

The resultant bond quality was evaluated by both the extent of the grain growth across the bond interface

and the elimination of a visible interface. The more extensive grain growth across the bond indicates a stronger

bond, and the less apparent the bond interface, the closer the bond strength wifl be to parent material strength.

Metallurgical examination of the sample cross-sections through the bonded samples indicated that the nickel

plated surfaces produced the highest bond quality of the three samples (see Figure 4.1.1-22), as both of the

desired features were attained to a high degree. Examination of the remaining two unplated samples, which used

the descaling and chemical milling surface preparations only, revealed interfacial contamination with no apparent

grain growth across the bonds, as shown in Figures 4.1.1-23 and 4.1.1-24.

One of the samples also underwent subsequent thermal cycling at 2150"F in order to simulate a secondary

braze cycle for the nozzle which would join the stiffening bands and the nozzle inlet manifold attachment to

the tubular skirt subassembly. The post-bonding treatment further enhanced bond integrity in the nickel plated

sample by causing additional grain growth across the interface as shown in Figure 4.1.1-25.

_,_ 4--11
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Figure 4.1.1-1. Round-Tube Specimen Tooling
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Figure 4.1.1-2. Square.Tube Specimen Tooling
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I:E_il,36

Figure 4.1.1--8. Preformed Square lnconel 625 Tubes Inflation Formed�Diffusion Bonded in a Hot

Isostatic Press Furnace at 7000 psi and 2100"F With Tubes Unmasked To Form Tube-to-Tube Bonds

F_83g

Figure 4.1.1-9. Preformed Square lnconel 625 Tubes Inflation Formed�Diffusion Bonded in a Hot
Isostatic Press Furnace at 3000 psi and 2100_F With Tubes Unmasked To Form Tube-to-Tube Bonds
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FE(ESI;40

Figure 4.1.1-10. Preformed Square Inconel 625 Tubes Inflation Formed�Diffusion Bonded
in a Hot Isostatic Press Furnace at 500 psi and 2100"F With Tubes Masked To

Prevent Tube-to-Tube Bonds. and With Contamination Present Due to Masking

F E(_,_,37

Figure 4.1.1-11. Preformed Square Haynes 230 Tubes Inflation Formed�Diffusion

Bonded in a Hot Isostatic Press Furnace at 3000 psi and 2100"F; Microcracking

Occurred in Outside Corner Radii Due to High Material Strain and Strain Rate
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?

FEe25_38

Figure 4.1.1-12. Preformed Square Haynes 230 Tubes Inflation Formed�Diffusion

Bonded in a Hot lsostatic Press Furnace at 3000 psi and 2100°F; Microcracking

Occurred in Outside Corner Radii Due to High Material Strain and Strain Rate
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Figure 4.1.1-17. Inconel 625 Tubes Inflation Formed�Diffusion Bonded in a Hot Isostatic Press

Furnace at 17,000 psi and 2100*F Showing a Network of Concentrated, Continuous Carbides
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Figure 4.1.1-22. Inconel 625 Tubes Sheetmetal Nickel Plated and

Diffusion Bonded at 5000 psi and 1900_F for 6 Hours
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200X

500X

18533

Figure 4.1.1-23. lnconel 625 Tubes Sheetmetal Cleaned With Descaling

Solution and Diffusion Bonded at 5000 psi and 1900_F for 6 Hours
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500x 50o_
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Figure 4.1.1-24• lnconel 625 Tubes Sheetmetal Cleaned With Chemical

Milling Solution and Diffusion Bonded at 5000 psi and 1900°F for 6 Hours
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Figure 4.1.1-25• Inconel 625 Tubes Sheetmetal Diffusion Bonded at 5000 psi and

19000F for 6 Hours. Then Heated at 2150°F To Simulate the Secondary Braze Cycle

u,-o, 4--34



Pratt & Whitney FR-23116

4.1.1.2 Thermal Sprayed Tubes

This effort focused on reduction of the oxide content in the sprayed coatings, and has been limited to testing

with INCO 625 tube material. Samples that were sprayed with hydrogen-rich parameters and using argon both

as the cooling and carrier gas showed no appreciable decrease in the oxide content of the coatings. Reduced

oxygen content powders were procured for further testing. In an attempt to determine the origin of the oxygen
in the coating (incoming powder or oxygen in the air), a sample was sprayed in an inert chamber constructed of

aluminum and filled with argon. This allowed an oxygen content of 200 ppm to be maintained within the chamber

atmosphere and resulted in reduced oxygen content of the sprayed coating; however, the porosity of the coating

increased significantly due to the higher density of the argon atmosphere. From these samples, it is evident that

the majority of the oxygen is being enu'ained in the spray from the ambient atmosphere during the process.

Figures 4.1.1-26 and 4.1.1-27 are photomicrographs of air sprayed HVOF versus inert chamber sprayed HVOF,

respectively. Additional samples were sprayed in the inert chamber in an attempt to improve the density of the
coatings. Other oxide reducing experiments were conducted as the lower oxide content powders arrive, but due to

the apparent oxygen entrainment, these are not expected to significantly reduce the oxide content of the coatings.

Inert arc-wire spray was also evaluated as an alternative spray process. Several samples have been sprayed

with an arc-wire gun in the inert chamber. Results thus far have again shown a significant amount of oxide

reduction compared to those sprayed with the same gun in air. Figures 4.1.I-28 and 4.1.I-29 provide a

comparison of air sprayed arc-wire versus inert chamber arc-wire. Porosity increased with this set of samples

also, and additional arc-wire experiments will be conducted in an attempt to reduce the porosity.

Initial evaluation of the inert HVOF spray compared to the inert plasma spray revealed that when using

identical powders, a much lower oxide level is achievable with the inert plasma process than with the inert HVOF

process. This is attributed to one of two phenomena. One theory is that the oxygen in the HVOF combustion

process is not entirely being consumed by the hydrogen and is migrating into the coating. The second theory is

that the inert plasma process is reducing the oxide on the powder (due to spraying with argon and hydrogen),

resulting in a low oxide coating. The inert HVOF sample is shown in Figure 4.1.1-30, and the inert plasma

spray sample is shown in Figure 4.1.1-31. Further testing was done in this area using samples with thick spray,

so that the bulk oxygen measurements can be taken and compared with the level of oxygen in the initial powder.

Furt_ metallurgical studies will also be conducted to measure the extent of grain growth and ductility that can
be achieved with different heat treatments.

Test pieces have been fabricated for follow-on work using vacuum plasma spray over Inconel 625 tubes.

The initial work was completed under an IR&D program in 1990, and the results are shown in Table 4.1.1-4.
The mechanical properties shown indicate that the higher heat treatments significantly improve elongation and

reduction of area properties when compared to the lower temperature heat treatments. However, the effects of

both the 2150 ° F heat treatment and the high pressure need to be investigated further.
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Table 4.1.1--4. Average Room Temperature Tensile Properties for Vacuum Pli_sma Sprayed Inconel 625 Tubes

Comtitiom PL (ksi)_1_ YS (ksi) UTS (ksi) Elongation (%) Ra (%)

As Sprayed 131 163 169 1.9 4.2 --

Heat Treat 132 166 170 1.7 4.7
9(_00F/4 hrs

Heat Treat 136 175 175 0.8 1.1
1200°F124hrs

Heat Treat 120 147 166 7.0 11.0
1800°F/1 hi"

I,l.l_'ed 2150"]:/15 67 77 142 20.2 19.8
ksi/l hr

t i

(I)ProportionalLimit

Based on theseresults,remaining testingwillfocuson threeareas:(I)ductilityenhancement withouthot

isostaticpressing(HIP'ing),(2) fillingthe intersticesbetween the tubes,and (3)bond strengthimprovements

without gritblastingthe tubes.

Resultsof the inertwire sprayedspecimensduringthisreportingperiodindicatethe effectsof varyingheat

treatmentstoimprove ductilityand modifyingsprayparameterstoimprove densityof thesprayedmaterial.Table

4.I.I-5 shows thatwith the standardsprayparametersand standardheat treatments,the elongationproperties

are unacceptablylow. Based on theseresults,additionalsamples were sprayedwith modifiedspray parameters

and underwent thestandardheattreatmentof 2000°F forone hour ina vacuum, The metallographicevaluations

in Figures 4.1.1-32and 4.1.I"-33show a slightimprovement in densitywith the modified spray parameters.

MetaUographic resultsto determineeffectson ductilityare pending.

Table 4.1.1-5. Tensile Properties of Inert Wire Sprayed

lnconel 625 Heat Treated at 2000°F for One Hour in Vacuum

Specimen No. Te_rature (oF) 0.2% Offset ¥$ Tensile Strength h Elongation (ok) Ra (%)
(p_) (psO

i i

1 Aznbient 31.I00 31,I00 0.6

2 Ambient 41,800 41,800 0.7

3 Ambient 39,500 39.500 0.4
I I

Note: Percent elongation taken from the graph.
ii

As reported previously, the vacuum plasma spray material has exhibited unacceptably low ductility when

sprayed without high-temperature heat treatments. The only heat treatments found to be effective are at

temperatures greater than 180(YF and with the use of a HIP furnace. However, the elevated temperatures

required to improve ductility in the plasma sprayed material reduce yield strength of both the plasma sprayed
material and the tubes.

Results of the inert wire sprayed specimens during the previous reporting period indicated the effects of

varying heat treatments to improve ductility, and of modifying spray parameters to improve density of the

sprayed material. Using the standard spray parameters and standard heat treatments, the elongation properties

were unacceptably low, Based upon the previous results, additional samples were sprayed with modified spr:"

parameters and underwent the standard heat treatment of 2000_F for one hour in a vacuum. The metallograp

evaluation showed a slight improvemem in density, however, ductility testing showed no improvement. -
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Preliminary sizing of the sheetmetal jacket for the full-scale nozzle indicates .that sections are as thin as

0.060 inch to approximately 0.150 inch. The thermal sprayed concepts are not as attractive to the thin sections
because of the difficulty in bonding, and in reduced material properties when compared to sheemaetal. In addition,

the high porosity and low ductility of the thermally sprayed materials require significant heat treatments and
processing to improve properties to an acceptable level. Based upon these results and the full-scale nozzle

manufacturing planning studies, further investigations of thermal sprayed tube concepts will primarily support

the final investigations for the low oxide powders and the thermal spraying of braze material in support of the
braze tube fabrication trials.

HVOF_
Meg: 400X

7247

Figure 4.1.1-26. Air-Sprayed HVOF
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HVOF_ Mag: 400X
7252

Figure 4.1.1-27. Inert Chamber HVOF Spray

Mag: 400X 7256

Figure 4.1.1-28. Air-Sprayed Arc-Wire
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Mag: lOOX 7256

Figure 4.1.1-29. Inert Chamber Arc-Wire

FC_9235

Figure 4.1.1-30. Inert HVOF Spra3, Heat Treated at 2000*F for 1 Hour (400x )
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T-CIt g2'38

Figure 4.1.1-31. Inert Plasma Sprayed Inconel 625 (400x )

q

• ql
t

r.c1T923e

Figure 4.1.1-32. Inert Wire Heat Treated at 2000°F for 1 Hour in Vacuum (50x )

4--40



Pratt & Whitney FR-23116

.-. .. ,:: "-

FC1 lg_37

Figure 4.1.1-33. Inert Wire Heat Treated at 2000*F for 1 Hour in Vacuum (50x )

4.1.1.3 Brazed Tubular Assembly

The Segment 1 braze alloy screening trials were completed. Nine braze alloys were evaluated in this segment
(Table 4.1.1-6). All of the samples have been brazed and evaluations are complete. Evaluations performed on the

braze samples include: visual inspection, microstructural evaluation, micro-hardness testing, and microprobe mass

spectrometry. Figures 4.1.1-34, 4.1.1-35, and 4.1.1-36 are examples of the variety of microstructures observed
in these screening trials. The results are currently being reviewed by an expert panel consisting of representatives

from Materials Engineering, Design Metallurgy, and Manufacturing Engineering, with expertise in the field of

brazing. A downselect decision to three candidate braze alloys will be made by the team after the results are
evaluated. The three candidate braze alloys will then be further evaluated in the Segment 2 parametric study.

Table 4.1.1--6. List of Braze Alloys Being Evaluated in Segment 1

Nicrobraze 10 AWS BNi-6 Ni, P-11% 1610 1610

Nicrobraze 30 AMS 4782 Ni. Cr-19%. Si-ll% 1975 2075

Nicrobraze 50 AWS BNi-7 Ni, Cr-14%, P-10% 1630 1630

Nicrobrazc 3002 N/A Ni. Cr-15%. Si-8% N/A N/A

Nicrobraz¢ 5025 N/A Cu, Ni-38%, Cr-7%. P-5% N/A N/A

Nicrobraze 150 N/A Ni, Cr-15%. B-3.5% 1930 1930

Nicrobraze 210 AMS 4783 Co, Cr-19%, Ni-17%, Si-8%, W-4%, B-0.8% 2025 2100

Amdry930 AWSBNi-8 Ni, Mn-2%. Si-7%. Cu-5% 1820 1870

Amdry 300 N/A Ni. Cr-19%. Mn-9.5%, Si-9.5% 1950 2000
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A design of experiments for the Segment 2 study was outlined. The DOX was structured to optimize

theductilityof the base material/brazealloycombinationsbased on thecontrollableparameterslistedin Table

4.1.1-7.Testingmethods arc currentlybeing defined.As a baselinecomparison,Gold-Nickel(AMS 4787,.....

brazespecimenswillalsobc produced sincethisbestsimulatestheSSME brazedtubularnozzleforcomparative

purposes to the current state of'the art. Fabrication of test specimens for this segment have begun.

Table 4.1.1-7. Parameters to be Investigated in Segment 2

Pmctcr

Braze Alloy

Base Material

Braze Temperature

Tune at Braze Temperature

Diffusion Ttme

Diffusion Temperature

Values
i

Three Candidates

Haynes 230, 188 and _one| 625

High. Medium and Low

1.5. 1.0 and 0.5 Hours

0. 1.5 and 3.0 Hours

High. Medium and Low

The Segment I trialsevaluatedninebrazealloystodown.selectthreeforPhase 2 testing.Each of thebraze

specimens was subjectedto a seriesof teststo evaluatethe qualityof the brazejointformed. Examinations

wcrc performed to determinethe flowand meltingcharacteristicsof thebrazealloy,to lookfordefects,and to

dctermincalloyingdepth and diffusionintothetubematerial.Micro-hardnessreadingswere takentocharacteriz

therelativestrengthand ductilityof the brazcmcnts,as well as theeffectof thebrazealloyand corresponding-

thermalcyclingofthe tubematerial.F'mally,where additionalinformationon diffusionbonding phenomena was

desired,microprobe mass spectrometrywas used to determinethe compositionof vmious phases and regions
found in severalof the brazcmcnts.

Based upon Segment 1 braze alloy trials, several of the alloys were eliminated due to unsatisfactory material

properties. Nicrobrazc 10 and 50 were eliminated due to their relatively low melting points. Nicrobraze 210,

5025, and AM 930 were eliminated due to their poor melting and flow properties. Based upon the characteristics

judged most important for the braze alloys (relative ductility or micro-hardness, and diffusion effects), and past
experience, the following three braze candidates were selected for further study. AM 300 demonstrated the

lowest hardness with readings ranging from HRC 35-49 in the braze joint. Nicrobraze 30 was selected based on

successful history of applications in gas turbine engines. Nicrobraze 150, containing boron, showed promising

hardness results. However, a review of research performed by Pratt & Whimey's Materials Laboratory suggests

that the alloy AMS 4779 should produce significandy better results than the Nicrobraze 150.

The Scgmcnt 2 braze alloyscreeningn'ialsarcsummarized inTables4.1.1-8,4.1.1-9,and 4.1.1-10.The

parametersto bc investigatedin Segment 2 includethe threecandidatebraze alloys,the threebase material

candidates(Inconcl625, Hayncs 188,and Haynes 230),the brazetemperature,and the brazetime. Thc brazc

cycle retortprocedure shown in the tablesissimilarfor allthrcccandidatebraze alloys,with only slight

differencesin hold timc and braze temperature.
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Table 4.1.1--8. AMS 4782 Braze Trials

Run Nmber Sample No. * (A)-Bra_ Temperature (B).Hoid Time (hrs

(° F +IO° F) +:15/-:00)

1 1 2200 1:00

4 2 2200 2:00

3 3 2200 4:00

6 4 2150 1:00

2 5 2150 2:00

5 6 2150 4:00

* Due to our experience with this alloy on gas turbine hardware, the amount of experimentation that is required is

linited.

Table 4.1.1-9. Amdry 300 Braze Trials

Run Number SamlM¢ No. (A)-Bra_ Temperature (B).HoId Time (hrs

(o F _I0 ° F) + :15/-.'00)

2 I 2050 I:(30

8 2 2050 2:00

6 3 2050 4:00

7 4 2100 I:00

3 5 2100 2:00

5 6 2100 4:00

9 7 2150 I:00

4 8 2150 2:00

1 9 2150 4:00

Table 4.1.1-10. AMS 4779 Braze Trials

Run Number Sample No. * (A)-Braze Temperature (B)-Hoid Time (hrs

(°F :_.IO°F) +:151-:00)

6 1 2000 1:00

3 2 2000 2:00

2 3 2000 4:00

1 4 2075 1:00

4 5 2075 2:00

5 6 2075 4:00

* Due to our experience with this alloy on gas turbine hardware, the amount of experimentation that is required is

linited.
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The Segment 2 braze alloy testing was completed for A.MS 4782. This testing consisted of varying braze

temperature and hold times to determine the most cost-effective solution. All of the samples have been complete" '
and underwent a bend test to verify braze and bond strength properties. The bend test parameters were finaliz

to ensure repeatable test procedures for each sample.

The full-scale nozzle rnanufacmring planning and preliminary design studies selected a two-step braze process

as the baseline configuration. The first step uses a high-temperature braze to join the tubes to the sheeunetal

jacket. The second step joins the skirt to the stiffening bands and to the manifold attachment. This two-step

braze process requires that the second braze process be at a significantly lower temperature than the first so

as not to remelt or affect the bonding achieved by the first braze. The only candidates for the two-step braze

process are AMS 4782, which has a braze temperature of about 2200"F, and AMS 4787 (gold-nickel) for the

second braze, which has a braze temperature of about 1850°F. The other candidates, Amdry 300 and AMS 4779

have braze temperatures of 2050 and 20000F respectively. Either of these materials would remelt or undergo

recrystallizadon during the second braze cycle. Based upon these studies, the remaining braze fabrication trials

will focus only on the AMS 4782 and AMS 4787 braze processes.

Other manufacturing planning studies conducted for the brazed nozzle configuration have shown that the

existing P&W gas box furnace equipment is too small for the 580K or larger nozzle. Pratt & Whitney currently

owns a large vacuum fia-nace that is suitable for a full-length 580I( nozzle, or truncated nozzle up to 800K thrust.

Therefore, since a vacuum furnace would most likely be used in the full-scale nozzle development program, all

of the braze materials are being run in a vacuum furnace. The results to date show that there is no discernible

effect between the hydrogen environment of a gas box furnace and the vacuum furnace.

Three samples using the plasma sprayed braze afioy process have been successfully brazed with AMS 4782

braze alloy. One of these samples is shown in Figures 4.1.I-37 and 4.1.1-38. Small segments of sheetme*
were inserted between the tubes to create a gap to verify bonding with a specified gap size. The sheeune.

thicknesses were 0.005, 0.010, and 0.020 inch. The resulting 0.005 and 0.010-inch gap sizes were easi|y _led

by the braze alloy, but the 0.020-inch gap was too large. This sample was sprayed with 0.009-incti thick AMS
4782 powder, which required nine spray passes. The use of the plasma sprayed braze alloys offers the potential

for a significant reduction in the labor time typically required for braze material application.

Otbe.r full-scale nozzle manufacturing issues addressed in furore braze trials include: I) inflating the tubes

to a low internal pressure to ensure proper braze fit is maintained, 2) investigate masking techniques to prevent

robe-to-tube bonding and allow only robe-to-jacket bonding, and 3) further testing and evaluation of plasma

sprayed braze alloys to reduce labor time required for braze application.

The Segment 2 braze alloy testing was completed for AMS 4782. This testing consisted of varying braze

temperature and hold times to determine the most cost-effective solution. All of the samples have been completed

and will now undergo a bend test to verify braze and bond strength properties. The bend test parameters have

been finalized to ensure repeatable test procedures for each sample, and are now underway.

The full-scale nozzle manufacturing planning and preliminary design studies selected a two-step braze process

as the baseline configuration. The first step uses a high-tempermme braze to join the tubes to the sheetrnetal

jacket. The second step joins the skirt to the stiffening bands and to the manifold attachment. This two-step

braze process requires that the second braze process must be at a significandy lower temperature than the first

so as not to remelt or affect the bonding achieved by the first braze. Figure 4.1.1-39 illustrates the brazing

temperature versus melting temperature ranges for the three primary braze candidates and the two secondary

braze candidates. As shown in the graph, AMS 4779 is no longer being considered as a primary braze all _

candidate because the solidus is only 1800*F, which is well below the secondary braze temperature for A/_

4787 of 1800 to 1850"F. This remelting of the primary braze alloy has been verified in the fabrication trials.
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Additional studies have occurred to determine the effect of the interaction between the primary and secondary

braze alloys. The presence of silicon in A/viS 4782 (Ni-19Cr-10Si) causes the gold in the secondary braze

(82Au-18Ni) to form a low melting point alloy. Figure 4.1.1--40 is a plot of the gold silicon melting temperature

(liquidus phase shown above the curved line). The melting point of gold drops dramatically as silicon is added,
until a minimum melting point of 685°F (363°C) at the eutectic composition of 97.2-percent Au---2.8-percent

Si. The metallographic evaluations of this interaction arc shown in Figure 4.1.1-41, with the low melting point

alloy shown as the'dark region between the tube-to-tube fillet braze. This sample was tested at 1500=F for 150

minutes to determine the degree to which the operating envimumem of the nozzle will affect the braze alloy.

Additional samples of the step braze process are shown in-Figures 4.1.1-42 and 4.1.1-43 for A/VIS 4779 and

AIVlDRY 300 respectively, with an AIViS 4787 subsequent braze process.

The sample designed for the step braze techniques is shown in Figure 4.1.1--44, and uses preformed square

tubes placed side by side with 0.025-inch thick shims between every other tube. The shims will intentionally

create gaps in the tube mating surfaces to determine the ability of the braze to adhere to both surfaces when a

large gap is present. The excellent gap coverage shown so far has only been demonstrated on round tubes, where

capillary action or gravity might have more of an impact on drawing braze into the gap than on square tubes.

Other manufacturing planning studies conducted for the brazed nozzle configuration have shown that the
existing P&W gas box furnace equipment is too small for the 580,000-pound thrust size or large nozzle. Pratt

& Whimey currendy owns a large vacuum furnace that is suitable for a full-length 580,000-pound thrust nozzle,

or truncated nozzle up to 800,000 pounds thrust. However, the hydrogen gas environment used in the gas box

furnace assists the braze because of the reducing properties of hydrogen. In addition, a new gas box furnace large

enough to hold the nozzle for the 650,000-pound thrust size STME would be significandy less expensive than a

vacuum furnace of the same size. Since there appears to be advantages for brazing in both types of furnaces,

several braze samples were run in both environments to see if any significant differences exist. Figure 4.1.1-45
is a specimen that used round Inconel 625 tubes with the AMS 4782 braze alloy in a hydrogen environment.

Figure 4.1.1--46 shows another sample that used square Inconel 625 tubes and the same braze alloy, but was

processed in a vacuum furnace. Both samples show no porosity, excellent braze coverage, good adhesion to both

robe and sheetmetal base materials, and even indicate a small diffusion region (where the braze diffused into the

base material), which improves bond properties. The gap size is approximately 0.025 inch at the cross-section

at which the photo was taken. Microhardness readings were taken on the braze and the base metal for both

samples, and no significant differences were found. There me no significant differences between the samples
for the AMS 4782 braze material.

Figure 4.1.1-47 is a photograph of a round robe braze sample that used AMDRY 300 braze material in a

vacuum environment. Shims were placed between the tubes to determine the capability of the braze to cover

gaps in mating surfaces. Figures 4.1.1--48 and 4.1.1--49 show the metallographic analysis for the AMDRY 300

braze material on Inconel 625 tubes in a hydrogen and vacuum environment, respectively. As with the AMS

4782 braze samples, there is no discernible difference between the samples, and excellent braze coverage and
bond results were achieved.

As discussed in the last bimonthly, the plasma spray method of applying braze material offers a significant

reduction in labor costs typically found in brazed tube nozzle assemblies. The fabrication trials sample design,

shown in Figure 4.1.1-50, illustrates how the robe assembly is placed on top of the sheetmetal plate that has

been previously plasma sprayed with braze alloy. A low pressure is applied to the inside surface of the tubes

to physically mate the tube assembly to the plate, and the sample is placed inside the furnace, Figure 4.1.1-51

shows a cross-section of one of the Haynes 230 tube samples that was brazed at 2175"F in a vacuum after

being plasma sprayed with AMS 4782. The braze coverage is excellent, and the photographs show the braze

partially diffusing into both the sheetmetal and the tubes, which provides good bond joints. Microhardness
readings indicated a slight reduction in hardness compared to the AMS 4782 conventionally applied braze, which

4-45



Pratt & Whitney FR-2311

implies better braze material ductility. Figure 4.1.1-52 shows a brazed tube sample in which the sheeunetal

jacket was plasma sprayed with AMS 4782.

Bend testing was done to determine which of the three candidate braze alloys (AMS 4782, AMS4779, Or-
AMDRY 300) is the most ductile. A total of 82 specimens were fabricated and tested in the device shown

in Figure 4.1.I-53. The bend tester uses fiat Inconel 625 plates .050 and .078 in. thick, which contains a

0.008-0.012 in. groove filled with the braze alloy. The plate is pushed into the u-groove in preset increments

and inspected before and after each increment for cracks in the braze alloy. Figures 4. I. 1-54 and 4. I. 1-55

show samples undergoing testing.

Thirty-five of the specimens were tested in compression, another 35 in tension, and the re_g 12,

which serve as control specimens, have been brazed with AMS 4787 (gold nickel secondary braze material)

and tested in both compression and tension. The same sample design is used for both types of tests, with the

braze-filled groove on top of the sample for the compression test and the braze-filled groove on the bottom of

the sample for the tension test.

The tension tests were conducted in 0.100 in. increments, after which the samples are fluorescent penetrant

inspected, failures are recorded, and the samples are cleaned for further testing. Compression tests are conducted

in 1.000, 0.100, and 0.250 in. increments and processed in the same manner as the tension tests.

The specimens were fluorescent penetrant inspected after each increment of bending and were either accepted

or rejected for porosity or cracking. Results indicate a ductility advantage of AMS 4779 over both AMS 4782

and AMDRY 300, based upon tension tests alone. However, compression tests showed similar results between

all three primary braze alloys.

Bend testing results were evaluated to obtain a comparison of braze alloy ductility between the three primary

braze alloy candidates: AMS 4782, AMS 4779, and AMDRY 300. The braze bend tests were modeled after f

"Standard Method for Guided Bend Test for Ductility of Welds," ASTM E190-80. The specimens were be,,,._

in both compression and tension and then fluorescent peneu-am inspected for porosity or cracking. Additional"

tension testing was conducted to gather more data since it was believed that some specimens may have failed as

a result of porosity rather than cracking. Since porosity is a function of the application method plus the inherent

braze alloy properties, it is a complicating factor that may have skewed the results.

Each of the 72 specimens were reinspected under a high powered microscope and none of the specimens

showed any signs of porosity. The braze alloys have been cracked in both tension and compression and the
results have been summarized in Table 4.1.1-11.

Table 4.1.1-11. Braze Alloys TensionlCompression Cracking

Br_.¢ Alloy % Elongatlom (Tension) Standard Dcvlation

AMS 4779 5.58 3.1:2

AMS 4782 1.15 0.05

A.MDRY 300 0.98 0.17

Braze Alloy %Elongation (Com_ulon) Standard Dcvlatlon

AIMS 4779 13.18 0.08

AMS 4782 14.45 0.04

AMDRY 300 13.91 0.79
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The elongation measurements listed in Table 6-1 are valid for comparison between braze alloys. They are

not representative of actual alloy elongation properties due to differences between the standard elongation tests

and the above comparison tests.

These results showed that AMS4779 possesses a higher percent elongation in tension than does AMS 4782
or AMDRY 300. However, the difference in the standard deviations of AMS 4779 and AMS 4782 is significant

and indicates that the two alloys must not be significantly different. In addition, the test results show that the

AMS 4782 possesses a higher elongation in compression than the other two alloys. Based upon these results,
either AMS 4779 or AMS 4782 would be an appropriate braze alloy selection for ductility requirements. These

findings are also consistent with the bend testing and qualitative evaluations that were previously completed in
Phase I. Pratt & Whitney will proceed with the plans to use AMS 4782 as the primary braze alloy candidate

for all Phase II and full scale nozzle development work.
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Meg: lOOX

Figure 4.1.1-34.

Mag: 4OX

INCO 625 Tubes Brazed With NB-IO (Ni-11P)
Mag: 20(
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Mag: 16X

Mag: 50X

Figure 4.1.1-35. INCO 625 Tubes Brazed With NB-30 (Ni-19Cr-10Si)

Mag: IOOX
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Mag: 100X

Figure 4.1.1-36. Haynes 230 Tubes Brazed With NB.150 (Ni-I5Cr-3.5B)
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Figure 4.1.1-39. Brazing Ranges for Nozzle Braze Alloy Candidates
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Figure 4.1.1-42. Step Braze Sample _ Tubes and Jacket Were Plasma and
Brazed With AMS 4779 (Ni-3.SSi-I.8B). Then a Second Braze of Alloy AMS 4787

(82Au-18Ni) Was Applied and the Sample Brazed in a Lower Temperature Cycle

Figure 4.1.1-43. Step Braze Sample _ Tubes and Jacket Were Plasma and Brazed
With AMDRY 300 (Ni-19Cr-9.5Mn-9.5Si), Then a Second Braze of Alloy AMS 4787

(82Au-18Ni) Was Applied and the Sample Brazed in a Lower Temperature Cycle
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Fabrication Sample Design for the Step Braze Trials
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50X

Figure 4.1.1-45. Round lnconel 625 Tubes Brazed With AMS 4782

(Ni-19Cr-lOSi) in Hydrogen Showing No Porosi_ and Excellent Braze Coverage
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FE_4127

Figure 4.1.1--47. lnconel 625 Tubes Brazed With AMDRY 300

(Ni-19Cr-9.5MN-9__Si) in a Vacuum Environment Showing Excellent Gap Coverage
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Tube

Assembly

Haynes 230
Plate

Figure 4.1.1-50.

10 psi

Base of Plate

Plasma Spray Coated with Green
Surface Stopoff

Sketch 2

• _Jign Tube A_m_bly wi_
Perimeter of Plate as Shown

to Complete Sample Assembly

• Place 8ample on Flat Spider

• Place Weight on Sample

• Load Furnace

145_5

Fabrication Sample Design for the Plasma Spray Braze Application Method
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Figure4.1.1-52.Brazed Tube Sample_ SheetmetalJacketwas Plasma SprayedWithAM$ 4782 (Ni-19Cr-lOSi)
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°

Figure 4.1.1-53. Braze Sample Bend Tester
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Figure 4.1.1-54. Braze Sample Undergoing Bend Testing

u.,., 4--66



Pratt & Whitney FR-23116

Figure 4.1.1-55. Braze Sample Undergoing Bend Testing
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4.1.2 Sheetmetal Concepts

4.1.2.1 Explosion Forming�Laser Welded Convolute _-

Tool design of the flat specimen explosion form dies was completed and the fabrication of the three dies was

completed. Figure 4.1.2-I shows one of the explosion form dies during fabrication with the removable/replaceable
convolute forms.

All explosion forming u'ials were conducted by Explosive Fabricators, Inc. located in Louisville, Colorado.

The trials investigated if the sheeunetai will take the desired convolute form, what minirnura convolute land

width is obtainable by explosion forming, the extent of material thinning that occurs, and which of the two

materials is best suited for explosion forming.

Preliminary results indicate that the current full-scale nozzle sheeunetal convolute passage design, with an

aspect ratio of over 2:1, is too severe for consistem explosive forming. The same material strain present in

the LW/IF and DB/IF trials is found in the explosion forming process, with similar material thinning near the

attachment location. The first sample, shown in Figure 4.1.2-2, has been received and achieved passage heights

of up to 0.600 inch, which is close to the full-scale nozzle passage height of 0.620 inch. All of the samples

required multiple explosion forming and stress relief cycles to keep the sheemletal ductile and able to form the
high aspect ratio geometry. The supplier indicated that the Inconel 625 material required less forming and fewer

stress relief cycles than the Haynes 230 material.

All explosion formed samples were finally received from the explosion formed supplier, Explosion Fabricators
Inc. The supplier provided a detailed report and recommendations for both the fabrication trials samp

configuration and full-scale nozzle manufacturing configuration. These recommendations were included into --_

the full-scale nozzle Master Planning Summaries, and full-scale nozzle cost data has been updated for Phase I

downsclect. Excerpts from the Explosive Fabricators report are provided below:

The purpose of the program was to determine the feasibility of forming lnconel 625 or Haynes 230 panels,
23 inches square by 0.032 inches thick, to the desired contour. Three dies designed and built by were provided.

Forming Procedures:

l*

.

*

*

The panels were formed using explosive force with water as the driving medium. In addition,

a vacuum was pulled behind the panels to prevent burning of the material during the forming

operation.

The dies and panels were lubricated to decrease the friction between them and allow a more

uniform elongation over the surface of the panels.

Several explosive geometries were tested: line charges situated parallel and normal to the

convolutes , and net-shaped charges. The distance and amount of charge for the various

configurations were varied till the optimum results were obtained.

An anneal was performed on the panels between the forming operations. A forming operation

consisted of one to three explosive shots,
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Results:

1. The maximum depth of valleys between the inserts of the die before the first interim anneal was
0.33 to 0.36 inch.

2. The maximum depth of valleys between the inserts of the die before the second interim anneal was
0.43 to 0.46 inch.

3. The maximum depth of valleys between the inserts of the die before the third interim anneal was

0.50 to 0.54 inch.

4. The maximum depth of valleys between the inserts of the die before the fourth interim anneal was

0.55 to 0.60 inch.

, The panels reached the base of the die between the insert after the final anneal but failed. The

failures occurred at various locations ranging from half way into the valley down to the bottom of

the valleys. This type of failure seems to be the result of excessive thinning.

. Previously formed panels created by a break press were also used to evaluate their ability to conform

to the desired contour. This resulted in considerably deeper deflection after the initial shot. With

subsequent shots, the panel started to touch between the inserts, with no interim anneals. The

benefit of this approach was that the thinning problem decreased and the panels could be produced

to full depth with fewer forming and annealing operations; however, wrinkling occurred at the

ends of the convolutes.

Conclusions:

. Overall. the project worked as expected. Although the dies that were provided did not lend

themselves to explosive forming due to the limited amount of flange area to draw in and the size

and location of the vacuum ports, the panels were formed to approximately 95 percent of full

contour.

, Of the two materials used. Inconel 625 and Haynes 230. the lnconel seemed to form more readily.
The Haynes 230 failed when formed to an amount equal to the Inconel. resulting in additional

forming and stress relieving operations.

. The best results occurred with the preformed panels, though more evaluation will be required to

produce a finished part. The primary obstacle to overcome is to eliminate the wrinkles at the

convolutes lead in during the forming operation.

4. Of the dies provided, die No. 3 provided the best formed panels. This can be attributed to larger
flat in the bottom of the valleys (0.08 inch).

Recommendations:

1. In our opinion, to produce this nozzle in the sizes required, modification to the final shape and�or

preform will be essential

. The .final contour would lend itself more readily if the depth of the hoops were less in respect to

their width. One possible configuration would be using an arc depth that is less than half its width.
Additionally, the length of the flat and the radius at the bottom of the valleys should increase in size.
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. A possible modification to theflatpanel preforms would be to have them pre-bent (Figure 4.1.2-3).

This approach will lessen the amount of the elongation required to conform to the final contour.

The die required for this would need to have an area outside of the finished panel press area to draw

the material into where convolutes taper off to eliminate the wrinkling problem (Figure 4.1.2-4).

4. After a number of panels are formed, they may be welded together. Any distortion then can be

eliminated using a final sizing operation in a full female die. This will also planish the weld.

. Another possibility is to use brake formed panels for the lower nozzle sections and a separate part

for the convolute lead in. The two pats after forming can be welded together. This will alleviate

the wrinkling problem but add a welding operation.

A total of 24 Inconel 625 panels and 5 Haynes 230 panels were returned to P&W. Six of these Inconel 625

panels were selected for laser welding trials, based upon which had formed closest to the 0.620-inch required

convolute height and which had the fewest cracks caused by the explosion formed process. Figure 4.1.2-5 shows

a fully formed panel with no cracks. Additional panels were preformed using a brake press, which allows the

material to be preformed without significantly reducing wall thickness. However, the preforming also causes

the material gathers as shown in Figure 4.1.2--6. The remaining 27 samples had cracks near the base of the

convolute, as shown in Figures 4.1.2-7 and 4.1.2-8. Figure 4.1.2-9 shows random cross-sections away from the

weld, which were taken to determine the extent to which the material thinned nonurtiformly during the explosion

formed process. As shown in the figure, the cross-section is fairly uniform.

Photomicrographs of the welded sample at two random locations are shown in Figures 4.1.2-10 and 4.1.2-11.

The weld p=rarneters that were developed in the first sample will be used to weld the six selected panels tc

0.085-inch thick sheetmetal section that simulates the structural jacket. To determine the maximum allowat,,,_

gap that can be tolerated by the laser weld, shims will be placed between the convoluted sheet and the jacket.

This test will provide data for use in full-scale nozzle planning to estimate the process sensitivity to sheetmetal

dimensional and layup tolerances, which can significantly impact costs.

Recent full-scale nozzle design studies have indicated that a double convolute shape is feasible for the

sheemaetal jacket. This double convolute is achieved by explosive forming or machining the outer jacket, and

explosive forming the inner sheetmetal nozzle. This design allows reduced height-to-width ratios for the explosive

formed inner wall, thereby reducing the total material strain and material thinning. To better understand the

welding process, during the welding trials one of the lnconel 625 panels will becut in half and welded to itself

to simulate the double convolute design.

The weld parameters that were developed for the explosion formed lnconel 625 panels were used m the

welding of the best explosion-formed samples. A successfully welded sample is shown in Figures 4.1.2-12 and

4.1.2-13. The final task for completion of Phase I was to simulate the double convolute shape of the sheetrnetal

nozzle design. Figures 4.1.2-14 and 4.1.2-15 show the double convolute sample, which was created by cutting

one of the explosion formed panels in half and tack welding the two sections together in preparation for laser

welding. The sample was not completed because the sheetrnetal nozzle studies were discontinued following the

February Component Development Team meeting. At this meeting, the results of the fabrication trials were

discussed and the explosion formed/laser welded fabrication process was eliminated from further considera,"

due to high cost and low producibility. Additional information on the nozzle downselect rationale is provk _
in Section 5.
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FALl01513_5

Figure 4.1.2-1. Explosion Form Die With Removable�Replaceable Convolute Forms
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Figure 4.1.2-3. Explosive Fabricators. Inc Nozzle Proposed Preform Blank

Figure 4.1.2-4.
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FE([_5314

Figure 4.1.2-5. Inconel 625 Panel Explosion Formed With No Cracks

FEe_5,309

Figure 4.1.2-6. Incone1625 Panel Preformed Using a Brake Press and Explosion Formed to the Final Geomet73,
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FE_-_317

Figure 4.1.2-7. lnconel 625 Panel Showing Typical Failure Due to the Explosion Forming Process

FE-_5315

Figure 4.1.2-8. lnconel 625 Panel Showing Typical Failure Due to the Explosion Forming Process
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FE_(5681

Figure 4.1.2-12. Explosion Formed�Laser Welded Sample

Figure 4.1.2-13. Explosion Formed�Laser Welded Sample
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Figure4.1.2-14.ExplosionFormed/Laser Welded Double-ConvolutedSample

FE(_26879

Figure 4.1.2-15. Explosion Formed�Laser Welded Double-Convoluted Sample
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4.1.2.2 Laser Welded�Inflation Formed Sheetmetal _

The first sample (Figure 4.1.2-16) was used to test the inflation appaxams and the test specimen configuration.

The laser weld land width of 0.060 inch was selected based on heat transfer requirements. Testing of the first

sample proved that the sensitivity of the pressure gauges is critical to proper inflation forming, especially during

the initial introduction of pressure. The fast sample inflation formed to a height of 0.160 inch before rupture
occurred in the welds due to the pressure increasing at a rate that was more rapid than intended. Metallographic

evaluation of the welds before and after inflation form indicated that the welds were severely damaged by the

forming process and that signs of excessive strain rate were present (Figure 4.1.2-17). Failure initiated at the high

stress concenwation point between the sheeanetal that simulates the nozzle hot wall and the plate that simulates

the nozzle smmuml jacket, and propagated through interdendritic tears in the weld metal (Figure 4.1.2-18).

The second sample was intended as an upper limit screening test of the inflation forming process on Haynes
230. The intent of the test was to determine if the sheetmetal would form to a height of 0.620 inch using the

highest temperature (2150°F) at the lowest practical strain rate for forming (10 psi increase in pressure every five

minutes). Results of the second test indicated that a change in specimen design was required to accomraodate

the method of gas introduction into the convolutes. The specimen redesign was completed and incorporated into

the remaining specimens. Rupture of the second specimen occurred at 70 psi in the areas where the laser welds

ate terminated (at the bifurcation point) on the sample (Figure 4.1.2-19). The convolutes reached a height of

0.150 inch before rupatre occurred.

The first two Haynes 230 LW/IF test specimens were completed using a 0.060-inch weld land width. The

firstsample was inflationformed to a heightof O.160 inch beforeruptureoccurred in the welds due to a

abnormallyhighrateof pressureincreaseduringthe test.Metallographicevaluationof the firstsample showed

that the welds were severely damaged by the forming process and signs of excessive strain rate were present.

The failure initiated at the high stress concentration point between the sheetmetal (which simulates the nozzle

hot wall) and the plate (which simulates the nozzle structural jacket), and propagated through interdendritic
tears in the weld metal.

The second sample was intended as an upper limit screening test of the inflation forming process on Haynes

230. The intent of the test was to determine if the sheetmetal would form to a height of 0.620 inch using the

highest temperature (2150°F) at the lowest practical strain rate for forming (I0 psi increase in pressure every five

minutes). Results of the second test indicated that a change in specimen design was required to accommodate
the method of gas introduction into the convolutes. The specimen redesign was completed and incorporated into

all future specimens. Rupture of the second specimen occurred at 70 psi in the areas where laser welds are

terminated (at the bifurcation point) on the sample shown in Figure 4.1.2-20. The convolutes reached a height

of 0.150 inch before rupune occurred. Metallographic evaluation of the specimen has indicated that forming.at
the slower strain rate eliminates the weld related cracking. However, severe weld heat affected zone and base

metal defects are created as shown in Figure 4.1.2-21.

Based upon the unsatisfactoryresultsfound from the firsttwo samples as describedabove, the LW/IF

candidate using Haynes 230 is not considered a viable candidate for the full-scale nozzle fabrication method. The

first sample indicated that using high strain rates causes fracture in the weld metal and resultant failure between

the base metal and the weld. The second sample showed that using slower strain rates shifted the failure location
from the weld to the heat affected zone of the base metal, with unacceptable overstress and resultant failure in

d_ region.The two samplesfailedattotalstrainsmuch less(approximatelyI/5)of the total strainthatwould

be requiredtoachieve0.620-inchpassageheightconfiguration.Based upon the fabricationtrialresultsdescribed

above,Haynes 230 was not continuedas a candidatefor the LW/IF process.

Three of the Inconel 625 LW/IF samples completed testing, at an inflation rate of 10 psi/5 minutes at

1800°F. The first sample ruptured at an area of incomplete weld penetration in one of the welds, shown in Figure
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4.1.2-22, after reaching a height of 0.210 inch. The incomplete penetration in the weld was caused by improper

focusing of the laser beam onto the worlcpiece. Metallographic evaluation of the welds revealed cracking in the

heat affected zone of the welds, as shown in Figure 4.1.2-23.

The second sample was a repetition of the first sample using the proper laser beam focus. This sample

inflated to a height of 0.225 inch before rupture. Metallographic evaluation of the welds also revealed cracking

in the heat affected zone as shown in Figure 4.1.2-24, in much the same manner as the first.

The third sample was completed using the same forming parameters as the first, but with a special form

of Inconel 625 known as Low Cycle Fatigue (LCF) Inconel 625. This material is reported to have improved

LCF capabilities and was expected to be an improvement in ductility at elevated temperatures compared to the
conventional Inconel 625. This third sample inflated to a height of 0.390 inch before rupture occurred, which

is the best inflation perfonnm_e of any material to date, shown in Figures 4.1.2-25 and 4.1.2-26. Results of

the metallographic evaluation are pending.

A sample using 300 series stainless steel was performed to investigate the Aerojet (Babcock & Wilcox)
sheetmetal nozzle fabrication demonstration configuration. Because limited data is available on the Aerojet

concept, a concept demonstration was performed with the 300 series stainless to verify the feasibility of the

Aerojet process.

The sample was inflated at 1800°F at a rate of 10 psi/5 minutes. The sample inflated to a height of 0.340

inch before rupture, which is 0.040 to 0.090-inch higher than the Aerojct design. A preliminary strain calculation

was performed to compare the two design concepts, and it was determined that the Pratt & Whimey concer,,

using 1.2 x 0.620-inch passages undergoes roughly four times the total strain of the Aerojet 1.25 x 0.25-i

passages. The difference in passage georaetry is significant in terms of the degree to which the sheeunetal mu_
stretch to reach the desired height. This last sample, shown in Figures 4.1.2-27 and 4.1.2-28, also showed that

the process reaches a configuration limit in the neighborhood of aspect ratios at about 4:1.

Metallographic evaluation of the 347 stainless steel sample, which was performed to investigate a

welded/inflation formed concept similar to that studied by Aerojet in their Thrust Chamber Technology ADP

contract' was completed. The investigation shows that fracture occurred in the high stress concentration interface

at the weld location. Results of the metallographic evaluation are shown in Figures 4.1.2-29 and 4.1.2-30.

All of the screeningtrialsperformed using LW/IF conceptsshow unsatisfactoryresultsatpassage aspca

ratiosat about 2:I. The full-scalenozzlepassagegeometry forthe sheelrnetalconfigurationsisnot conducivc

tothe LW/IF processduc tothe reduced parentmaterialpropcrticsncarthe weld beforeforming,and thc high

strainexperiencedattheselocations.Based upon thcfabricationud_alresultsand thefuU-scalcnozzlcpreliminary

designand manufacturingplanningstudies,theLW/IF conceptswillno longerbe considereda viablefabrication

process candidate.

As discussedin thc previousbimonthlyreport,allscreeningtrialsperformed using laserwelded/inflation

formed (LW/IF) conceptsshow unsatisfactoryresultsatpassagcaspectratiosatabout 4:I.The full-scalenozzle

passage geometry for the shcctmctalconfigurationsisnot conducive to thc LW/IF processduc to thc rcduccd

parentmaterialpropertiesncarthewcld bcforeforming and thchighstrainexperiencedattheselocations.Based

upon thc fabricationtrialresultsand thcfull-scalenozzlepreliminarydesignand manufacturingplanningstu_

the LW/IF conceptswillno longerbc consideredas a viablefabricationprocesscandidate.
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FE_117"2

Figure 4.1.2-16. Haynes 230 Laser Weldedllnflation Formed Test Specimen (6-inch x 12-inch)
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Mag: 40X

Tear

7278

Figure 4.1.2-18. Photomicrograph of Laser Weld Rupture

Caused by Inflation Forming Process (Material = Haynes 230)
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Figure 4.1.2-23. Laser Welded�Inflation Formed lnconel 625 Cross-Seca'on Sample No. I (40x )

Fc11g_'32

Figure 4.1.2-24. Cross-Section Through Laser Welded/Inflation Formed lnconel 625 Sample No. 2 (32 x )
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4.1.2.3 Diffusion Bonded�Inflation Formed Sheetmetal

Small samples of the DB/IF shccunetalfabricationprocesswere fabricatedwith availablemolybdenum

tooling material. The molybdenum tooling is used in the small samples because it is a high strength, low alpha

material that provides the high diffusion bonding pressure at a high temperature in lieu of a high temperature

hydraulic press. The required forming temperature of Haynes 230 is 2150_F, which prohibited using the existing

hydraulic press that has a temperature capability of 1850°F. The molybdenum tooling provided the bonding

pressure between the shcctmetal parts by clamping the two tooling plates around the test specimen.

Four smallsampleswere tested:two Haynes 230 and two LCF Inconel625 samples.All willbe diffusion

bonded ina vacuum and theninflationformed ina hydrogen retort.One of each of thedifferentmaterialswill

be inflatedina slow strainrateand one each ata high strainrate.Resultsof thefirstHaynes 230 prematurely

failedin a specimen perimeterweld,afu:rthe convolutesreacheda heightof 0.270 inch.The perimeterweld

has been repairedand thesamplewillundergo anotherinflationcyclem completethetrial.The sample,shown

in Figure4.1.2--3I,isbeforethe second inflationcycle.

The larger DB/IF samples had been delayed due to raw material unavailability. However, all raw material has

now arrived and the samples are being fabricated. Inconel 625 thus was the only material used in the large DB/IF

trials due to the temperature limit of the hydraulic press used to press the material to form the diffusion bonding.

The first larger Inconel 625 DB/IF sample was completed. The sample was diffusion bonded in a hydraulic

press at 1800*F for six hours. The sample was mislocated in the press during bonding, which prevented inflation

forming of the sample. Metallographic evaluation of the sample shows that good bonding was achieved between

the sheemaetal jacket and the liner, as shown in Figure 4.1.2-32. During the bonding process, some plastic

deformation of the die was noted. This deformation indicates that a convoluted die for a full-scale nozzle may

have a limited life at the high temperature forming environment.

The first small Inconel 625 DB/IF sample was completed as shown in Figure 4.1.2-33. The sample underwent

a vacuum diffusion bond cycle at 2000*F for two hours, with bonding pressure applied by Moly tooling. The

bonding cycle was followed by an 1800°F inflation form cycle, with pressure increasing 10 psi/5 minutes. During

the inflation cycle the specimen ruptured at 390 psi, where the edge of the convoluted tool applied pressure

onto the specimen. Visual examination of the sample indicated that no diffusion bonding occurred. The failure

to diffusion bond the sample is attributed to the inadequate surface finish and flatness of the sample. The
remaining samples were ground fiat and parallel within 0.001 inch, and will have a lapped surface finish. The

metallographic evaluation of the sample, shown in Figures 4.1.2-34 and 4.1.2-35, confirmed that no diffusion

bonding had occurred and that the sheetmetal was damaged by the forming process.

Both of the remaining small lnconel 625 samples were completed with unsuccessful results. Neither

sample reached the required convolute height of 0.620 inch before sample rupture occurred, as shown in Figures

4.1.2-36 and 4.1.2-37. The samples also did not diffusion bond, as shown in Figure 4.1.2-38. The metallographic

evaluation has shown base metal defects where the tooling force was applied to the sample. Material thinning

and porosity is evident in the location of highest stress, which was similar to results found in previous samples.

One of the Haynes 230 samples was completed, but did not achieve the required 0.620-inch height before
rupture. The final Haynes 230 DB/IF sample was completed and ready to undergo DB/IF processing. The DB/IF

tooling that had been used for all of the samples was experiencing significant plastic deformation, or creep, due

to the long duration at high temperature and pressure. Following the Haynes 230 processing, the tool was to be

cut up and undergo metallographic evaluation to determine the extent of tooling deformation experienced.

Final evaluation of this process was completed. Based upon unsuccessful results to date, this process has
several limitations that make it not a viable candidate for full-scale nozzle fabrication:
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. Zero-gap requirements for bonding to occur. The process is not tolerant of.normal sheetmetal
surface and dimensional variations. Mating surfaces must be ground fiat and parallel within 0.001

inch, with a lapped surface finish. This would require expensive preparation and tooling in the
full-scale nozzle.

2. Short tooling life due to plastic deformation, or creep. After a few cycles the tool geometry

changes due to creep, rendering the tool unacceptable for further use.

. High material strain and thinning causes rupture of the material near the tool mating edges. The

high aspect ratios (height - 0.62 inch, width - 1.2 inch) of the specimens caused a failure in each

trial, before the sheetmetal reached full height.

Ftwt_ investigation of the laser welded/inflation formed sheeunetal concepts was discontinued as discussed

in the preceding section.
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Figure 4.1.2-36. Diffusion Bonded/Inflation Formed Sheetmetal

Sample Showing Typical Failure in WeM Perimeter Location

FE._4ae_

Figure 4.1.2-37. Diffusion Bonded/Inflation Formed Sheetmetal

Sample Showing Typical Failure Near Bond Location
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4.2 NOZZLE FABRICATION TRIALS -- PHASE II

4.2.1 40K Subscale Nozzle Sample

The Phase U sample configuration, which will use a bel]-shaped, quarter scale ('40K thrust), full-contour

nozzle was established for the second phase of the fabrication trials program. This configuration was the best
choice for larger scale samples to mimic large-scale process requirements, tooling designs, tube shape, and
fabrication-induced material stresses.

The detailed tool designs were completed for the IF/DB tube, brazed tube, and HIP tube processes. Figure

4.2.1-1 shows the tooling and nozzle assembly design for the IF/DB and brazed nozzles. Both the IF/DB and

brazed subscale nozzles will use the same IN100 mandrels. The HIP IF/DB tool design (Figure 4.2.1-2) uses a

thinner inner mandrel that is also cenlrifugally cast IN100. The HIP design does not require an outer mandrel

because the pressure acts on all sides of the part, and therefore the tooling is not required to also act as a pressure
vessel. IN100 was chosen as the best tool material for the subscale nozzle fabrication processes because of its

good creep properties and compatible thermal coefficient of expansion. The best tool material, MAR-M-247, is

not readily available in the sizes required for the this tooling, but will be used for the full nozzle fabrication

tooling. MAR-M-247 has a significant better creep life than IN100, although the IN100 tooling currently being
procured will have a creep life that is more than adequate for the Phase H fabrication trials requirements.

The nozzle Component Development Team completed the Phase I Nozzle Fabrication Trials, the nozzle

•skirt downselea evaluation process, and the recommendations for Phase II Nozzle Fabrication Trials program.

The pros and cons of each fabrication process that was studied in Phase I were discussed, and the conclusions
are summarized below.

All of the major manufacturing technical concerns for each process have been addressed

• Tubular concepts are the most viable, and are applicable to both round and square tubes

Of the sheetmetal concepts evaluated, only the explosion formed/laser welded concept is producible
for the full-scale nozzle

Key critical process parameters have been identified including temperature, time, cleanliness, passage
geometry limitations, and tube gaps for brazing

• Potential inspection techniques have been identified

• Inconel 625 has been selected as the best material choice for all methods

• A preliminary assessment of repairability and reliability has been completed for each process

• The inflation formed/diffusion bonded process using an HIP furnace is the lowest cost option of all

processes

The tubes and jacket hardware for the inflation formed/diffusion bonded process and the brazing

process are identical, which allows both processes to be developed on a larger scale in parallel,
reducing full-scale nozzle manufacturing risk.
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The completed cost analysis and producibility rankings developed for each viable fabrication procedure is
shown in Table 4.2.1-1. The inflation formed/brazed tube process using an HIP furnace ranks the highest in

producibility and is the second lowest in production unit cost. The inflation formed/diffusion bonded process
using an HIP furnace ranks third in producibility but is the lowest in production cost Both of these processes will

require a large HIP furnace in order to meet these projected production costs. A separate study was performed to

accurately estimate the costs and resources needed to design, install, and operate this new facility for the nozzle

development program. The inflation formed/brazed tubes in a conventional furnace ranks second in producibility

but third in production unit cost, and the inflation formed/diffusion bonded process in a conventional furnace
ranks fourth in both producibility and unit cost. Both of these processes ate higher in cost than the HIP furnace

processes because of the difference in recurring tooling costs. The explosion formed/laser welded sheeunetal

process ranks fifth in producibility and is also the highest cost option of those studied in Phase I. The bar chart

shown in Figure 4.2.1-3 compares all of the skirt fabrication options to a traditionally brazed robe regeneratively

cooled nozzle that uses precision tubes and a traditionally high-cost gold braze alloy.

Table 4.2.1-1. Nozzle Skirt Fabrication Options _ Producibility Rankings and Costs

FYgl Cost in $k . 500th

Fabrication Procedure Producibiilty Ranking Unit

HIP Inflation Formed/Brazed Tubes

Inflation Formed/Brazed Tubes

Inflation Formed/Diffusion Bonded Tubes in an HIP

Furnace

Inflation Formed/Diffusion Bonded Tubes in a

Conventional Furnace

Explosive Formed/Laser Welded Sheetmetal

1 576k

2 634k

3 564k

4 717k

5 1147k

Based upon the results of the Phase I fabrication trials and the nozzle skirt evaluation process conducted in

thePhase B preliminarydesignstudy,theinflationformed/diffusionbonded and brazedprocesseswere selected

for furtherfabricationtrialsin Phase II.All of the shcctmctalconceptsas well as the thermalsprayed tube

conceptswillnot be pursueddue to highercostand feasibilityproblems.

The subscale nozzles, 40K size manufacturing technology demonstrators (40K MTD) that are approximately

one-quarter scale of the full-size STME nozzle are shown again in Figures 4.2.1-1 and 4.2.1-2. Both the
inflation-formed diffusion-bonded sample using an HIP furnace and the inflation-formed brazed sample using
a conventional HIP furnace were to be fabricated in Phase II. The tooling mandrels for the IF/Braze process

are made of centrifugally-cast IN-100 material. The HIP mandrel is made of centrifugal cast Inconel 625. The

structural jackets for the 40K MTD nozzles were fabricated in the P&W shop. The Inconel 625 round tubes
were received and formed to the finished square cross-section geometry and nozzle contour. The tube dies were

completed in the P&W tool shop. Due to the long lead time associated with the tooling mandrels for the 40K
MTD nozzlesand theuncertaintyof theoptimizedinflation,formed/brazeprocessparameters,additionalsamples

wcrc designedand procuredbeforeassemblyof the 40K MTD nozzles.

These new samples were to optimize inflation forming/braze process parameters before building the 40K
MTD nozzles, so that all of the processing variables (pressure, temperature, time, and pressure ramp rate) are

optimized and sensitivity to the various parameters are identified and controlled. The proposed sample design is

shown in Figure 4.2.1--4. It is a cylindrical, constant tube cross-section, a short version of the nozzle assembly

that simulates tooling, end caps, and pressurization and fabrication methods in either a full- or partial-hoop

design. The cylindrical samples were to use IN-100 forgings with grain size modified to simulate cast properties,

constant cross-section rectangular Inconel 625 tubes, and a cylindrical sheetmetal structural jacket. All other
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details _ similar to the 40K MTD nozzles, including the method of pressurization and the tube end caps. Pt_

II plans were for two complete cylindrical sample tooling assemblies. The number and type of samples to

fabricated was deterrn_ed by using Design of Experiments (DOX) based on Taguchi techniques to achieve th_
minimum number of tests required to incorporate all process variables and their interactions.

Additional process information was be obtained for tube forming parameters using single-tube sample testing

conducted in an HIP furnace. The proposed single-tube forming sample design is shown in Figure 4.2. I-5, and

includes a single rectangular constant cross-section tube inserted in a tooling block that has a pre-cut hole that
simulates the fin_hed (after inflation-forming/brazing) dimensions of the full-acale nozzle near the front end.

Small shims were tack welded to the tube sides near the ends before it is inserted into the tooling block, and the

tube will then be welded to the ends of the tooling block. "[he shims provide a known offset of the tube to the

tooling block, providing forming information for v_ions gap sizes tl_ could be expected in full-sczle nozzle

fabrication. The front end geometry was selected because it will be the most difficult to form in order to close

down gaps in the diametral fit-ups (tooling inner mandrel outer diameter [OD] fit-up with tube inner surface,

and tube outer surface fit-up with struaural jacket inner diameter [ID] surface). These single-tube samples were

fabricated and processed to gather information on requirements for successfully inflating tubes to achieve proper

braze fit-up, and to nm'ow the temperature, time, and pressure ranges in the cylindrical sample experiments

using low cost, rapid turnaround samples.

Based upon results of the Phase I fabrication trials and the nozzle skirt evaluation conducted in the Phase B

preliminary design study, the IF/DB and the brazed processes were selected for further fabrication trials in Phase

II. Sheetmetal and thermal-sprayed tube concepts were not pursued due to higher cost and feasibility problems.

ClampingFlanges

O

O

IN100 OuterMandrel

Tube and
JacketAssembly

N100 Inner/l_ _-_ /_ - Gas pressure

I SupplyPort
Mandrel

Figure 4.2.1-1. Phase 11 Tooling and Nozzle Assembly for the Brazed Tube Process

and the Inflation Formed�Diffusion Bonded Tubes in a Conventional Furnace
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Tube end

Jacket Assembly
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' L; '_d

=====_ /_t IN 100 Inne_ / _

l::__[_g:__ i i_d:;_t_tl Mandrel --J I

Figure 4.2.1-2. Phase I1 Tooling and Nozzle Assembly for the Inflation

Formed�Diffusion Bonded Tubes in a Hot Isostatic Press Furnace
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Figure 4.2.1-3. Nozzle Cost Comparison for Various Fabrication Options
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Tube _ INIO0 -

End Plates

re

Tubes Structural
Jacket

Figure 4.2.1-4. Cylindrical Sample Design for Inflation Formed�Brazing Process Parameter Optimization

Tube Shimsto
Create Gap

Tooling Block

le5_

Figure 4.2.1-5. Single-Tube Inflation Forming Sample Design

4.2.2 Single-Tube Samples

The single-tube samples were designed to provide IF process parameters for mbc forming. The mbc blocks

were machined and the trapezoidal hole, which simulates the space that a rectangular tube would fill for a 40K
MTD size nozzle, was installed. Thirty mbc blocks were fabricated, some of which arc shown in Figure 4.2.2-1.

Rectangular tubes were to be inserted into the blocks in different locations to simulate the gap sizes that could be
found in the nozzle assembly. Figure 4.2.2-2 shows a block with a tube inserted in the hole. The space between

the tube outer wall and the block was evacuated and seal welded shut. Each block was processed in a pressuriT- '

furnace under different conditions to provide the required lowest combination of pressure, temperature, and t_

needed for forming the tubes to fill the required space.
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The first four samples were run in a hot isostatic press furnace (HIP) in the Pratt & Whimey Materials Lab

using preformed rectangulartubeswelded in place,with the robeinteriorexposed to furnacepressure.Table

4.2.2-Isummarizes theoperatingconditionsthatwere used forthe formingexperiments.

Table 4.2.2-1. Operating Conditions Used In Forming Experiments

Sample Number Temperature Presslwe Time

(OF) (psi) (Hoars)

1 1925 500 1

2 1950 500 6

3 1950 700 6

4 1950 700 12
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The samples were assembled, leak checked, then sealed off and placed in the HIP furnace. The furnar,"
was brought to full temperature at near ambient pressure, then the furnace pressure was ramped up to the T=
4.2.2-1 values and held for the time shown. APcr removal from the furnace, the samples were cut open usin_
electrodischarge machining (EDM) and metallurgically examined.

Figure 4.2.2-3 is a transverse cross-section taken through the single tube AMS5581 sample No. 2 (HIP

processed at 1950F at 500 psi for 6 hours), and shows extensive cracking in the hot formed tube wall, as indicated

by the arrows. The predominately intergranular cracks were believed to have propagated from pre-existing base

metal defects (See Figures 4.2.2-4 and 4.2.2-5) in the tubing of a specific heat lot from one supplier. The probable
lossof internalpressureduringtheHIP cycledue toleakagethroughthecracks,may accountforthe tubewall

inabilitytohave expanded furtherand thuscontactedthe diebackwallsurface,asindicatedby thebracket.

Figure4.2.2.-6isa transversecross-sectiontakenthroughsample No. 3 (HIP processedat 1950 F at700

psi for6 hours)showing extensivecracksin the robingthatwas from the same heatlotand supplieras the

previoussample.The same pre-existingbasemetaldefectswere presentcausingsimilarcrackingand probable

lossof internalpressureduringforming.

Figure 4.2.2-4 are sections taken through defective tubing, showing extensive cracks in the longitudinal
orientation after cold forming the as-received round tube to the rectangular shape. The cracks are indicated by

arrows on the upper photo, while the lower photo shows a closer view of the cracks taken from sample No. 3.

Figure4.2.2-5aresectionsthroughtheround,unprocessed,as-receivedAMS 5581 robingfrom theoriginal

raw materialorder (heatcode HWIQ)), showing numerous intergranularvoids(indicatedby dark spots)in the

u'ansverseorientationof the leftphoto.The rightphoto indicatesextensivecracksand voids associatedwith

carbidestringersin the longitudinaldirection.
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FEeQge39

Figure 4.2.2-2. Single-Tube Sample Assembly
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12.8 X

AMS 5581

Formed at 1925 °F, 500 psi, 6 hours

Figure 4.2.2-3. Transverse Cross-Section Taken Through Single Tube AMS5581 Sample No. 2
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AMS 5581 Cold-Formed to Rectangular Shape
100 X

AMS 5581 Formed at 1950 *F, 700 psi, 6 hours

• ° : o

40 X

Figure 4.2.2--4. Sections Taken Through Defective Tubing

_, 4-116



Pratt & Whitney FR-23116

<

_d

IN

_.,.,., 4--117



Pratt & Whitney FR-23116

o

AMS 5581

Formed at 1950 • F, 700 psi, 6 hours

Figure 4.2.2-6. Transverse Cross-Section Taken Through Sample No. 3
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4.2.3 Cylindrical Samples

IF�Braze Samples

Since the IF/Braze process was downselected to only the pressurized furnace/lightweight tooling configura-

tions, the INl00 mandrels ordered from P&W-Georgia were no longer needed. The associated tooling details

on order from the tool supplier were cancelled.

A new lightweight mandrel was designed and built using an existing lnconel 625 forging. It was to be used

to demonstrate the IF/Braze process in a pressurized furnace. The mandrel is shown in Figure 4.2.3-I. During

the next reporting period, the 4-inch tube details will be completed and the fast IF/Braze cylindrical sample can

be assembled using this mandrel, as shown in Figure 4.2.3-2.

An additional mandrel will be formulated in the next reporting period using the remainder of the same

Inconel 625 forging. This mandrel will be used to demonstrate the bag-braze process on a cylindrical sample
with a hard OD mandrel.

Bag-Braze Samples

The bag/braze cylindrical samples were designed to simulate the bag/braze technique of forming tubes during

nozzle brazing. Figure 4.2.3-3 shows the bag/braze sample design that is currently being fabricated in the P&W

manufacturing shop. All of the structural jackets, tube details, weldment cover rings, and inner bag details were

completed. The jackets will be plasma sprayed with the braze alloy and the first samples assembled during the

next reporting period. The first two samples will be assembled in a nozzle top-end and aft-end configuration as

shown in Figures 4.2.3-4 and 4.2.3-5. These samples will provide preliminary information on process feasibility

and process parameters required for tube forming. Limited structural analysis indicates that a delta pressure of

14 psi may not be sufficient to push the tubes against the structural jacket; therefore, a pressurized furnace may

be required for this process. These sample details can easily be adapted to run in a pressurized furnace by

eliminating the weldment cover and seal welding directly to the tube ends.

The bag-braze cylindrical samples have been completed and are ready for processing in a HIP furnace.

Four samples have been fabricated, two of which use the "top end" tube configuration, and two use the
"bottom end" tube configuration so that process parameters can be verified on a cylindrical sample for both

geometries. Although the tube material used in these samples is not acceptable for demonstrating inflation

forming, the bag/braze technique uses tube bending to achieve braze fit-up rather than inflation forming, and
will be acceptable for pressure demonstration. Figure 4.2.3-6 shows all four samples, while Figure 4.2.3-7 and

4.2.3-8 shows one of each type. All samples have been leak checked and are ready for shipping to a HIP

supplier and processing during the next reporting period.

Sample Processing

The HIP suppliers were originally asked to quote on an m-process hydrogen purge system so that the

cylindrical and quarter scale samples could be formed and bonded at the same conditions as designed for the
full scale nozzle. However, neither furnace supplier would provide the low pressure hydrogen purge in their

HIP furnaces due to schedule and safety concerns with existing furnaces. The intent of the hydrogen purge
was twofold :

1. To remove oxides for greater braze and bond cleanliness

2. To provide a continuous monitoring and pump-down system inside of the sample in case of a leak
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A leak that occurred during the forming or bonding operations would allow furnace argon (which provido_

the furnacepressure)to leakintothe sample, Thiswould reducethedeltapressurewhich allowsthe fore

and permits impurities into the sample that could hamper brazing. Both vendors did, however, agree to provide'-_

vacuum pump-down and monitoring system that will be used for all cylindrical and quarter scale samples. This
allows the real time monitoring and evacuation that is needed to continue processing even with a small amount

of leakage into the pro-t, thus saving costly rework, repair, and furnace abort cycles.

A team technicalreview was heldto verifythe manufacturingand assembly conditionsand processesthat

were used to fabricate all four samples. These technical reviews were held before each sample was released to the

shop, and before each sample was released to the HIP supplier. This will ensure hardware integrity, incorporate

recent lessons learned, and estabfish process parameters for manufacturing, assembly and HIP processing. The

first two samples will be formed at the same HIP furnace conditions (selected to be 250 psi at 1925 F for 6

hours) followed with the standard braze process of 15-50 psi, at 2150 F for 30 minutes.
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4.2.4 40K MID Nozzle Samples

IF/Broze Samples ..

Procurement of the heavy IF/braze tooling mandrels for use in a nonpressurized furnace was terminated,

although the mandrels were already centrifugally cast at the time of the termination order. The OD mandrel will
now be used to fabricate up to three bag-braze samples in a pressurized furnace, as discussed below.

The tube raw material and sheeunetal for forming the structural jackets were received. The first 24 tube

test pieces were formed using the first of three tube-forming dies designed and built specifically for the 40K
MTD nozzle. The first die was reworked to accommodate higher than expected tube springback. The 24 tubes

are currently being formed to the finished front-cnd rectangul& shape in the first die. The second and third
dies were then used to create the aft-end rectangular shape and the nozzle contour, respectively. All tube dies

and the contour/aim fixture were completed.

Three of the 40K MTD structural jackets were completed; one is shown in Figure 4.2.4-1. These structural

jackets are the first of 12 that will be completed for all the 40K MTDs during the next reporting period. Each
jacket will be plasma sprayed with braze alloy before use in one of the 40K M'rD nozzle assemblies. The

spin mandrel used to fabricate the structural jackets is shown in Figure 4.2.4-2, together with the spin mandrel

used to fabricate the vacuum bags.

Bag-Braze 40K MTD Nozzle

The bag-braze 40K MTD nozzle design does not require an inner or outer mandrel for structural jacket

support during the braze cycle; however, results from the cylindrical hag-braze trials determined the final

configuration of the 40K MTD sample tooling. Should the structural jacket need support during the bag-braze

process, several options can be pursued:

I. Use a thicker structural jacket to prevent jacket yielding/creep during the forming/brazing process.

2. Use the thin inner mandrel currently being procured for the W/braze and IF/DB 40K MTD nozzles.

3. Reoperate an existing subscale calorimeter nozzle heat treatment fixture to accommodate the

slightly smaller diameter of the 40K MTD nozzle.

These options were evaluated so P&W can proceed directly from the cylindrical bag/braze samples to the

40K MTD bag/braze samples using one of the above options, if required.

Bag�Braze Samples

The quarter scale bag-braze sample design is shown in Figure 4.2.4-3. The two variations on the bag-braze

techniques are also shown. The use of weld rings will enclose the tubes and structural jacket within the bag
(thin inner sheetmetal piece) and the tool. Their usage causes the furnace pressure to act only to bend the tubes

for braze fit-up, the alternate configuration eliminates the weld rings, and the tubes are welded to each other,

to the inner bag, and to the jacket and tool. This leaves the tube interior wall exposed to the furnace pressure,
so both inflation forming and bending are used to achieve braze fit-ups. The cylindrical braze samples will

provide the basic process feasibility information needed to downselect between these two concepts during the

next reporting period. The OD mandrel, due in mid-October, will be machined here at P&W to accommodate

either configuration.

Using test pieces, the tube forming trials were continued and two of the three dies were completed. The

third die, which forms the tube contour, was reworked to accommodate higher than expected tube springbacV A

tube sample shown in Figure 4.2.4--4, is very close in final shape but with an undersize bend in the aft set
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Figure 4.2.4-1. 40K MTD Structural Jacket
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Figure4.2.4-2.Spin Chucks for 40K MTD Outer Jacket and Vacuum Bag
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SECTION 5.0
SUBSCALE NOZZLE TASK

5.1 SUBSCALE NOZZLE FABRICATION AND TEST SUPPORT

The subscale nozzle fabrication and test program was planned to address several of the key full-scale nozzle

prioritized risk issues, including the following:

• Effectof filmcoolingon nozzlehardware

• Effect of thermal mismatch between the chamber and the nozzle resulting in a step in the wall contour

and possible nonconcentric alignment

• Nozzle accelerating core flow effect on film layers

• Transient aerodynamic effects on nozzle hardware.

The preliminary design concept, as shown in Figure 5.1-1, mates with the existing P&W/NASA 40K

subscale injector and calorimeter chamber that successfully completed 28 firings in August and September of
1990 at the MSFC TS116 test stand.

Originally three different subscale nozzle concepts were considered for use: a film/water cooled calorimeter
nozzle, a tubular film/convective cooled nozzle, and a sheetrnctal Columbium film cooled nozzle. The calorimeter

nozzle was selected as the optimum test vehicle because of the distinct advantages in the areas of heat Iransfer
data analysis, fabrication, durability, and instrumentation capability. The relative advantages and disadvantages

of the three nozzle configuration options, from a technical standpoint only, are summarized in Table 5.1-I. In

addition to the technical advantages, the calorimeter nozzle offers a slight advantage in cost and schedule.
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Table 5.1-1. Subscale Nozzle Configuration Comparison

Calod_r No:de Col=robin Sh_etat No,dr Tad_=_" No.de ._
(Ba_h,e ) (Opaan ) (OlX_m)

Hem TraBder Data/uBdyd=: • Film coolin8 effectivenesscanbe .Film cooling effectiveness canbe .C_n_ateruzcertamty due to
determined with mktimum determined with mktimum convective cooling
uncerutinty uncentinty

•Use static pressuresand .Use static pressacc=and
temperataar¢=to calculate tla'tm temperaturesto calculate tlmm

•Turned circumferentialchamatel .Sbeetmetalcolumbium -
liner.minimum toolin8 co=t= expensive tooling required for

weklmSand framingopa=im=

Teat llmmbtllty:

Test R_l.aremmts:

•Ekozoformed nickel do=eout

•Welded Tubes

•900 ° R averase wall temperature

•Water coolant supply 150 to 300
gpm at 250 psi

•Hydrogen coolant supply 2 to 5
lb/sec at 285 psi maximtma

•Instnmaentatio. easily installed
(thermocouples,static press_e
probes)

•Silicide coating - easily damagod
and difficult to repair

•3050=R maximum wall
temperature

•Potential for severe oxidation if

coating damaged

•Hydrogen coolant supply 2 to 5
lb/_.c at 285 psi maximum

•The_ples cannot be used on
nozzle aft end (>210001=)

•Infrmed csnz_

•Use static pressures and
temperatures to calculate tlmmt

•Brazed or diffusion bonded tubes

- expensive tooling requked for
one.tinz braze or bo.ding
oper,ttom

•Raw material (tube) cmu are
high for anal] quantity

• 1200'R average wall temperature

•Hydrogen coolant supply 2 to 5
lb/tec at 285 psi maximtma

•Instrumentation installation

moderately difficult

t_ 30.0 : _ Water

Typical 48 Places _ Tubes

L- Primary Film 4.91 t_adius Dia
Coolant Injector

.-7-..---m

c=o,meter

Water Coolant

Inlet Manifold

FDA381

Figure 5.1-1. Subscale Thrust Chamber Assembly
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5.1.1 Design and Analysis

The focus of the design and analysis work performed was to establish preliminary nozzle and film injector

geometry, based on the full-scale STME nozzle. Using the established full-scale STME nozzle length, area

ratio, and contour, a preliminary subscale nozzle contour was designed to simulate the predicted full-scale nozzle

aerodynamic and thermal conditions. From the preliminary subscale nozzle contour, which features an area ratio
of 45 to 1 and a length of approximately 27 in. from the chamber throat, the film cooling injector geometry can

be established. Consistent with the proposed test plan, P&W was to provide four unique primary film coolant

injector pieces, each with a unique film injector orifice design. Two of the injectors will inject the primary film

coolant parallel to the nozzle wall, both sonic and supersonically. The other two will be designed to direct flow

parallel to the nozzle centerline, both sonic and supersonically. Figure 5.1.1-I is a conceptual design illustrating

the film coolant redistribution between subsonic and the primary supersonic injection locations, which closely

simulates the full-scale design. The subsonic film coolant injected at the forward lip of the injector helps smooth

the hot gas flow past the step in the wall contour which is intended to simulate the discontinuity in wall contour
found in the full-scale design. The subsonic film coolant also helps cool the primary injector lip. The subsonic

flow, metered by small orifices, and the sonic/supersonic flow, metered by the primary orifice passages, will

be varied during the nozzle characterization tests. Metering of the coolant flows in this way offers precise

control over the flow distribution to enhance the accuracy of the resultant data analysis. These passages will

be electrodischarge machined (EDM) into a ring forging made of lnconel 625. A two-piece cover ring will

then be brazed to close out the passages, eliminating the possibility of leakage flow around the injector orifices.

The four preliminary passage geometries were evaluated for producibility, EDM tooling, brazing, and structural

considerations. The primary issues in designing and producing these injector rings are holding close tolerances
in the orifice flowpaths, limiting braze fillet encroachment into the orifice flowpath while achieving strong braze

bonds, and limiting thermal loads on the injector ring for maximum durability.

The preliminary liner coolant passage geometry was established and structurally analyzed. Materials
considered for the liner include centrifugally cast Inconel 625 and wrought Inconel 625 made by spinning

sheetmetal. Although the centrifugally cast material offers slight advantages in lead time and improved flexibility

in the raw material geometry, the wrought Inconel 625 offers better material properties. The liner geometry was
being analyzed for creep strain ratcheting (CSR) life, creep life, and low-cycle fatigue life as an initial screening

method for material selection. Further structural analysis of the liner passages included simple elastic/plastic finite

element modeling to determine the influence of thermal gradients and other static loads on the liner passages.

The hydrogen inlet manifold, the water coolant tubes and water coolant inlet manifolds, and the nozzle liner

closeout geometry were rough sized and reviewed for producibility, tooling, assembly, packaging, and structural
considerations. The manifold is made from Inconel 625 forgings welded together and to the nozzle liner before

the electroformed nickel plating and final machining.

The conceptual subscale nozzle design was analyzed with the General Aerodynamic Simulation Code, GASP.

This computer code was developed for NASA-Langley by Dr. R. Waiters of Virginia Polytechnic Institute. The
subscale nozzle flow field was assumed to be inviscid and frozen. Both the normal subsonic injector and the

tangential sonic injector were modeled. The static pressure field shown in Figure 5.1.1-2 reveals distinct pressure

waves that emanate through the flow domain. The impact of the injectors on the main stream hot gas is shown

in Figure 5.1.1-3. The temperature contours in Figure 5.1.1-.4 clearly illustrate that the cold region of nozzle

is adjacent to the walls.

The existing subscale calorimeter chamber reoperation procedures were established and the final mechanical

design and analysis completed. The procedures have not significantly changed since the proposal, as shown in

Figures 5. I. 1-5 and 5.1.1--6. Three of the aft water coolant tubes and three of the corresponding water coolant

discharge tubes will be removed, as well as the aft end of all eight of the larger water coolant inlet manifolds.
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The chamber will be inspected, cleaned, and shipped to EF Nickel for plating of the aft chamber/nozzle flanl_,"

Following the flange buildup procedure, the chamber will undergo final machining, cleaning, and reattachmt

of the water inlet tubes and manifolds at P&W. As shown in Figures 5. I. I-5 and 5. I. I-6 the process is simple

and well within the current capabilities of the supplier's processes. The flange has been sized to standard

structural criteria based on MSFC Handbook 505A as modified for ground test rig hardware. Material properties

for the flange material have been specified, and material samples will be provided in process to ensure quality
requirements are met.

The subscale nozzle chamber rework design and analysis and detail drawing release were completed. The

rework design includes removing four each of the chamber aft end inlet and exit tubes, and cutting back all
eight of the large water inlet manifolds.

The final chamber reoperation drawings have been completed and released to manufacturing for preparation

of the manufacturing Master Planning Summaries and Operation Sheets.

The subscale nozzle design and analysis work was completed. All of the major nozzle components m the
hydrogen inlet manifold, the nozzle liner assembly, and the injector rings m were structurally analyzed and meet

all test program durability requirements. The heat transfer and aerodynamic performance analyses have been

completed for the nominal operating points and the results incorporated into the mechanical design and used in

the structural analysis. The updated subscale nozzle assembly is shown in Figure 5. I. I-7. As a result of NASA

TS116 test personnel input at the Design Review, the water coolant tubes have been staggered and the hydrogen
inlet manifold extended to allow for better installation and assembly access.

An enlarged view of the final film coolant injector configuration is shown in Figures 5.1.1-8 and 5.1.1-9.

Analysis of the secondary film coolant has shown that the 72 rounded posts used to distribute the flow wet
significant improvement compared to the original square post design based upon CFD analysis results in Figurt.-s

5.1.1-10 and 5.1.1-11. The 3-D model is a five-degree "pie-slice" of the cavity, and depicts one-half of one

injector orifice along the top left symmetry plane. This orifice directs the flow axially into the top cavity, which

then rams radially inward in between the posts. The flow is directed through another axially stepped cavity and

into the hot gas path. The models show the pressure contours at the highest and lowest inlet pressure conditions,

the two design limit cases for flow analysis. The results shown in Figures 5.1.1-12 through 5.1.1-15 indicate

that although the distribution achieved in the 'rounded post' design is significantly improved over the "square

post' design, there is some concern about the incomplete flow distribution directly underneath the metering holes.
Therefore, another scheme in which slots were machined in the posts was modeled. The most recent CFD model,

shown in Figures 5.1.1-16 through 5.1.1-19, indicates that the slots machined in the posts do not significantly

improve the flow maldistribution underneath the metering hole due to the high pressure differential across the
cavity. The flow travels out of the orifice and through the slot in a supersonic jet which does not flare out and

effectively cool that section of the injector ring lip. Currently, the nozzle team is brainstorming methods of

smoothing out the flow to resolve the maldistribution problem.

The film injector slot geometries were designed to bracket the full-scale nozzle film injector operating

conditions. Four primary film injectors will be used in the test program, two sonic and two supersonic injectors.

All of the primary injectors are approximately I/4-scale models of the full-scale nozzle candidate designs.

The secondary film injectors are designed to provide effective film cooling of the injector ring itself, while

minimizing impact on the nozzle core exhaust flow or downstream primary film cooling. The injector geometries
were designed using the P&W slot film cooling code, the Two-Dimensional Kinetics code, and CFD codes.

The hydrogen supply manifold has been designed to minimize non uniform film coolant flow, with less t_

one percent variation in pressure. It is a constant diameter manifold, allowing simple machining and fabricaL
methods to be used.
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The nozzle coolant liner heat transfer analysis was completed based upon coolant passage geometry (width,

height, and wall thickness) designed for operation at a chamber pressure of 2250 psia and an overall O/F of

7.2 with no film cooling. The liner is cooled with approximately 25 Ibm/see of water at 300 psia and 540°R.

The water coolant flow rate and water pressure was set to cool the liner wall with no boiling at the maximum

design condition. A minimum safety factor of 2.0 was used to establish water flow per channel, resulting in a
nominal liner hot wall thickness of 0.040 inch. At the maximum operating point using nominal and worst case

film coolant conditions, the maximum liner hot wall temperature predictions me approximately 1130°R. At the

maximum operating point and no film cooling, the maximum predicted hot wall temperature is approximately

1740°R. These temperatures and operating conditions were used in the structural calculations for life predictions.

The injector ring heat transfer model was completed to provide temperature data for use in structural life

calculations. Maximum wall temperatures of approximately 1600°F occur in the injector ring at the maximum

operating point.

As shown in Figure 5.1.1-20, the critical life locations of the nozzle assembly were identified early in the

program to be those areas with large thermal gradients.

Based upon the temperature predictions of the nozzle liner heat transfer models, final calculations of liner

fatigue life were completed using a MARC finite element model. The MARC model was used to model plastic

deformations which occur during the thermal cycling of the component. The MARC plastic analysis included

incremental pressures and temperatures for five full test cycles showing cyclic loading for each test cycle. The

analysis results show the designexceeds life requirements, with a life prediction of 350 cycles at the minimum

film cooling, 2250 Pc operating point. The nozzle liner test program calls for 25 tests, for a total safety factor

of 14. Fracture life calculations to establish the maximum acceptable flaw size allowable in the nozzle liner

weld location have shown that a flaw size no greater than 50 percent of the wall thickness is allowable to
meet life requirements.

The injector ring was also modeled using the MARC finite element analysis tool. At the same minimum

film cooling, 2250 Pc operating point the injector ring life prediction is 250 cycles at the hot wall and 70

cycles at the coolant wall side. Each injector ring usage is no more than 7 cycles for a total safety factor of

more than 10. Fracture life calculations to establish the maximum acceptable flaw size allowable in the injector

ring weld location have shown that a flaw size no greater than 50 percent of the wall thickness is allowable
to meet life requirements.

A brief analysis of transient side loads which may occur at start-up and shutdown due to flow separation
showed that the low loads and the stiff nozzle structure minimize the effect of side loads on test hardware. A

full 180-degree separation was assumed at an area ratio of 7 extending to the nozzle exit. The resulting side

load due to this worst case separation scenario is only 2400 pounds. The net effect of a 2400-pound additional

load acting on the nozzle side wall is minimal, due to the extremely stiff structure of the liner with the nickel

plating structural closeout. Additional stiffness is inherent due to the water inlet and exit tubes mounted to
the nozzle and the test stand.

The structural analysis performed includes:

I. Initial calculations of nozzle liner fatigue life for screening of raw material between centrifugally

cast or spun liner.

2. Preliminary finite element modeling of film coolant injector ring to understand deflections and

predict fatigue life.

3. Preliminary calculations of spun nozzle liner fatigue life for final sizing of liner passages.
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The initial calculations of liner fatigue life indicated that the significantly better properties of a spun li_,',

were required, and that the cenu'ifugally cast method of fabricating the liner raw material should not be purst
F'trst cut results of the finite element modeling for the film coolant injector ring indicate that although the rin_

has some slight plastic deformation due to high thermal loads, there will be sufficient life to meet all test goals.

The preliminary nozzle liner fatigue life calculations are ongoing. The liner passages were sized for optimal heat
u'ansfer characteristics, and may be reduced in width to improve fatigue life if necessary.

The mechanical design work completed for the nozzle liner included:

I. Providingraw materialdefinitionfororderingliner,manifold,and injectorringraw material.

2. Determiningfabricationsequencesand reviewingpreliminarytoolingdesigns.

3. Determiningassemblyand disassemblysequencesand coordinatingassemblyfeaturerequirements

on the components with the assembly engineers.

4. Selectingseals,fasteners,watercoolantrobesizes,and otherauxiliaryhardware.

5. Packagingand arrangementof thechamber/nozzlecomponents tobestprovideforassembly and

disassemblyofthecomponents,includingtheregularchangeoutofthefourdifferentinjectorrings

at TS116 duringtesting.

6. Definingfits,clearances,tolerancesand othercriticaldimensions.

7. Identifyingweld types.

A change in the hydrogen inlet manifold location is shown in Figure 5.1.1-7. The previous configuration

used a "G-CON" inlet flange and extension pipe to duct in the gaseous hydrogen. NASA TS116 personnel

contacted P&W in mid-November 1991 and requested a configuration change to a simple AN fitting in p]_-_

of the G-CON flange. The detail drawings and the machining operation sheets were changed to reflect

new inlet configuration.

The secondary film cooling cavity configuration was finalized. As the results of the Computational Fluid
Dynamics (CFD) analysis showed, the circumferential distribution in the secondary cavity was poor, which could

result in local hot spots during test rig operation. The new configuration uses a distribution plate, wherein a

piece of porous stainless steel (PSS) is attached to the cavity annulus just downstream of the metering orifices

to allow the flow coming through the orifices to splash and tam before exiting the cavity. This configuration,

shown in Figure 5. I. 1-21, is intended to slow down and better distribute the flow so that uniform circumferential

cooling of the injector ring is achieved.

A CFD model of this area was built for the secondary cavity and core gas stream flow at the low inlet

flow condition, as shown in Figure 5.1.1-22. The assumptions made during the initial modeling are also shown,

including the assumption that uniform flow conditions exist just downstream of the laSS ring. The core gas

and secondary coolant flow interactions and resultant temperature contours are shown in Figures 5.1.1-23 and

5.1.1-24. Figure 5.1.1-23 is a view of the combustion chamber from upstream of the throat, including the

secondary cavity and to approximately one-inch downstream of the secondary cavity exit into the core flow.

Figure 5. I. 1-24 is an enlarged view of the secondary cavity flow entering the core flow, showing the cooling

effect of the coolant gas against the injector ring wall. Figure 5.1.1-25 shows the velocity vectors overlayed onto
the hydrogen mass fraction contours, which shows that vortex mixing is occurring at the secondary cavity exit

location. This vortex mixing causes a small amount of hot gas flow to enwain against the injector ring lip, thus

reducing the cooling effectiveness. Figure 5. I. 1-28 shows the pressure contours at the interaction which indicate

a shock induced by the step in the nozzle wall contour. This shock will also be minimized by the incre- '

radius on the injector ring lip. The final CFD analysis will be completed during the next reporting period, ,

will include all of the updated design details and operating conditions.
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A scale model of the secondary cavity was designed and built to verify the effectiveness of the flow

distribution in the secondary cavity, to verify the assumption of uniform flow just downstream of the PSS, and to

examine an alternative design configuration. This flow rig is a two-dimensional, approximately 3X scale model

of the secondary cavity, and is capable of both water and air testing. During water testing, colored dyes will
be injected through the metering holes to visually examine circumferential flow distribution at the nozzle inlet.

During the air testing, pressure probes will be used to obtain static pressure measurements in the secondary cavity.

Measurements will be taken both with and without the PSS distribution plate to characterize its effectiveness in

circumferential flow distribution. An alternative configuration will be included in the flow rig, which will use

angled, slotted holes in the secondary cavity wall to force the flow to spread out circumferentially.

The primary and secondaryfilmcoolingconfigurationswere analyzedusingcomputationalfluiddynamics

(CFD). The resultsof the analysisare shown in Figures5.1.I-26through5.1.1-39,and includeresultsfrom

designsupportfor thesecondarycavity,analysisof the core,secondary,and primary flow interactions,and

analysisof the three-dimensionalprimary filmcoolantinjectordesign.As shown in the previousbimonthly

report, the film coolant distribution at the secondary cavity location was poor, which could result in local hot

spots for the injector rings during hot-fire operation. The baseline configuration was analyzed using a distribution

plate, wherein a piece of porous stainless steel (PSS) is attached to the cavity annulus just downstream of the
metering orifices to allow the flow coming through the orifices to splash and turn before exiting the cavity. This

configuration, shown in Figure 5.1.I-26, is intended to slow down and better distribute the flow so uniform

circumferential cooling of the injector ring is achieved.

A CFD model of this area was built for the secondary cavity and core gas stream flow at the low inlet

flow condition (Figure 5.1.1-27). The assumptions made during the initial modeling are also shown, including

the assumption that uniform flow conditions cxist just downstream of the PSS ring. Based upon the results

discussed in the last bimonthly, the secondary cavity design was modified to provide a larger injector ring lip

radius in order to reduce core gas mixing with the film flow. In addition, several gas inflow conditions were
modified to understand and improve the film coolant properties and resulting wall temperatures. Table 5.1.1-2

summarizes the geometry and fluid conditions for the two secondary cavity analyses. The major changes were an

increased lip radius, and an increased inlet pressure. The increased pressure represents the higher flow condition

that will be run in the test matrix. Further analyses will study the impact of the low flow condition with the

updated geometry changes included. The hydrogen mass fraction contours are compared in Figure 5.1.1-29,
where significantly reduced vortex mixing of the film coolant with the core gas is evident. Figure 5.1.1-30

shows the gas temperature contours associated with the old and new designs. An adiabatic wall was used in

all analyses, and no backside convective cooling of the injector lip was taken into account. The temperature

contours for the first half of the injector ring (where backside cooling is not in effect) match closely with heat

transfer temperature predictions used in the structural analysis. Figure 5.1.1-31 shows the penalty for the higher

mass flowrate, which is the increased shock strength at the injection location on the pressure contour plots. This

increased flowra_ has a small impact on the pressure sensed by the primary lip, and will therefore have a small
performance impact on the nozzle.

Figure 5.1. I--45 shows the film injector flow system with the porous stainless steel baseline design. Figure

5.1.I--46 shows a side view photograph of the flow model. Figure 5.1.I--47 shows the location of the side

wall pressure taps, the slot exit pressure probe locations, and the dye injection ports on a schematic of the

flow rig. Figures 5.1.I--48 through 5.1.I-50 show gage total pressure at the slot exit location for the baseline

porous stainless steel design compared to the conffol configuration (no distribution plate), the 45 degree ramp

design, and the double-perforated plate design. The pressure distribution on the outside of the first and third

orifice locations can be ignored because of end wall effects. The pressure distribution of the baseline design is

significantly better both at and between orifices than the other configurations. Figures 5.1.1-51 through 5.1.1-54

show the pressure distribution of the different configurations at the location of the pressure taps, just downstream

of the metering orifice, as well as the slot exit measurements. In all of the cases, the porous stainless steel

_=., 5-7
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design is an improved distribution between the first and the third orifices, when compared to the other dcsi""

configurations. Based upon the flow rig data, the porous stainless steel design remains the baseline design
will be included in the hot fire testing.

The uncooled film injector ring design task is complete, and is intended to provide (for hot fire testing) a

durable injector ring made from a high-temperature material so that primary film cooling can be blocked. By

blocking the primary film cooling supply, the calorimeter nozzle can be run with essentially no fiLm cooling to
provide an anchor point for the code validation tasks and quantitatively examine the absolute effects of all film

cooling configurations to be tested. The material for the uncooled ring will be chosen based upon availability

and test durability concerns. A high-temperature capability graphite material is being considered to limit thermal

stress. The secondary cavity flow, which provides some injector ring coolant, will still be used during the

test to ensure a positive coolant outflow at the chamber/nozzle flange location and reduce injector ring wall

temperatures. The primary coolant flow passages will not be machined into the part, thereby effectively blocking

most of the primary coolant flow except that which leaks underneath the injector ring/nozzle mating fit (less
than 5 percent of the total nominal film coolant flow).

Table 5.1.1-2. Comparison of Old and New Secondary Slot Model Geometry and Inflow Conditions

Parameter Old Slot New Slot

Rtip 0.005 m. 0.070 in.

m 0.210 lbm/sec 0.352 lbm/sec

Po 70 psi 94.26 psi

To 530 ° R 535.50 R

M 0.20 0.05

P 68.06 psi 94.1 psi

T 525.80R 535_250 R

Q 7.536 x 10 "4 slug/ft 3 1.023 x 10 .3 slug/ft 3

"Y 1.4 1.386

The next major CFD analysis was performed to understand the interaction of the core flow with the primary

film coolant. Table 5. I. I-3 lists the boundary conditions used for the core flow, the secondary cavity inflow, and
the primary cavity inflow in the CFD model. The hydrogen mass fraction contours shown in Figure 5.1.1-32

show that these conditions produce less mixing of secondary film and minimal impact of the secondary film on

the primary film injection. The temperature contours shown in Figure 5. I. 1-33 show that the secondary film layer

provides adequate cooling for the injector ring when considering that the backside cooling is the primary cooling

mechanism for the second one half of the injector ring length. The interaction of the normal and tangential film

injection produces a complex shock and expansion wave, which is shown in Figure 5. I. 1-34. These shocks are

relatively weak and do not have a significant impact on the integrity of the primary film cooling jet, which is
shown in Figure 5. I. 1-35. The mixing of the film cooling jet and the core flow indicates that the exhaust film

is approximately 50 percent hydrogen at the nozzle exit. The temperature contours, plotted in Figure 5. I. 1-36,

show that the primary film layer provides adequate cooling for the nozzle skirt. The hottest gas temperature at
the nozzle wall is found near the exit and is approximately 1300°R. This model also assumes adiabatic wall

for conservative temperature predictions. These temperature predictions are slightly lower than the temperatures
used in the structural analysis, which indicates a conservative approach to the test hardware design. Figure
5.1.1-37 shows the pressure contours, revealing shock losses due to the throat expansion, the secondary, and

primary film injection. These performance losses will be quantified and compared to performance predicta ....
made with TDK analysis.
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Table 5.1.1-3. Subscale Core�Film Coolant Interaction _ Imposed Boundary Values for High-Flow Case

Properly Core Inflow Subsonic Inflow Prinmry Inflow

Po 2250 psi 94.26 psi --

To 6780 ° R 535.5' R --

M 0.2233 0.05 1.456

P 2187.38 psi 94.1 psi 55.5 psi

T 6735.0 ° R 535.25* R 372.10 R

0 1.448 x 10 -2 dug/ft 3 1.023 x 10 -3 slug/ft 3 8.677 x 10 4 slug/ft 3

•y 1.134 1.386 1.386

m 84.21 lbm/sec 0.352 lbm/sec 1.773 lbm/sec

Mesh Size: 75 x 61, 25 x 69, 59 x 81, 36 x 118. 36 x 118:19,575 Grid Points
i •

Preliminary CFD analysis of the primary injector cavity included modeling the large supersonic injector

to determine exit plane conditions. These results are shown in Figures 5.1.1-38 and 5.1.1-39. The pressure
contours and Mach contours show that an excellent uniform exit profile achieved at the injection point into the

nozzle. Further CFD analysis will include coupling the three-dimensional primary injector mesh with the core

flow to determine the impact of the injector webs on the film integrity.

A scale model of the secondary cavity has been built and tested in the Aerothermal Design Lab facility at
Pratt & Whimey (P&W). The purpose of this flow rig is to verify the effectiveness of the flow distribution in

the secondary cavity, to verify the assumption of uniform flow just downstream of the porous stainless steel,

and to examine several alternate design configurations. Figures 5.1.I-40, 5.1.1--41, and 5.1.1-42 show the top,

front, and side views respectively, of the flow rig. Figure 5.1.1-43 can be compared with the secondary cavity

design shown in Figure 7-2 to see the close match in geometry. The rig was used for both air and water testing.

During water testing, colored dyes were injected through the metering holes to visually examine circumferential

flow distribution at the nozzle inlet. During the air testing, pressure probes were used to obtain static pressure

measurements in the secondary cavity. Measurements were taken both with the PSS distribution plate and other

designs in order to characterize its effectiveness in circumferential flow distribution. The configurations run in
the flow rig were various schemes to distribute the flow, and included Feltmetal, a screen, a simple plate with

a row of holes drilled in it, the ramp design shown in Figure 5.1.1--44, and the PSS baseline design. Both the

water and air testing results to date favor the PSS design over the next best configuration, the "ramp" design.

Static pressure measurements taken at the cavity exit during air testing are shown in Figure 5.1.1-44. The PSS

provides a more uniform pressure drop distribution across the cavity. One additional configuration is being built

and tested in the flow rig during the next reporting period. All of the designs are interchangeable in the same
secondary cavity annulus, so manifold and nozzle machining is not impacted.

"o •
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Figure 5.1.1-1. Subscale Nozzle Film Cooling Simulates Full.Scale Design
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Figure.5.1.1-3. Film Coolant Injector Flow into Main Stream of Hot Gas Flow
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Figure 5.1.1-8. Film Coolant Injector Configuration
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Figure 5.1.1-9. Subsonic Cavity Configuration
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Figure 5.1.1-11. Flow Velocity Field at Subsonic Cavity
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Figure 5.1.1-15. Flow Velocity Field at Subsonic Cavity Exit

Plane for Highest Inlet Pressure Case -- Rounded Post Design

5-20
O_,-_,L F'._E

OF POOR QUALITY



Pratt & Whitney FR-23116

CONTOUR LEVELS

0.04000
O.1OOOO

O.1GO00

1.220D!

1.2BO00

0.34000

0.40000

0.46000

0.52000

0.58000

0.64000

• i.li;

I,BBOUI]

I.OGO00

1.12000

1.18000

1.24000

1.30000

l._GflO0

_of
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Figure 5.1.1-20. Nozzle Assembly Critical Life Locations
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Figure 5.1.1-21. Analysis of Secondary Coolant Cavity _ Design Solution: Porous Stainless Steel Filter
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Figure 5.1.1-27. Secondary Cavity Design Using Porous Stainless Steel for Flow Distribution
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Assumptions:

• Algebraic Turbulence Model

• Equilibrium Chemistry in the Chamber

• Frozen Chemistry in the Interaction Region

• Chamber Po = 2250 psi, To = 6500"R

• Injector Po = 70 psi, To = 530°R

• Chamber Walls Fixed at T = 14400R

• Injector Walls are Adiabatic

t2245

Figure 5.1.1-28. CFD Flow Model of Secondary Cavi_ Flow Interaction
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FE 625393

Figure 5.1.1--40. Subscale Nozzle Flow Rig

FE¢?. S3Q2

Figure 5.1,1--41. Subscale Nozzle Flow Rig
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Figure 5.1,1--42. Subscale Nozzle Flow Rig
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Figure 5.1.1-43. Ramp Design for Secondary Cavity Flow Distribution
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Figure 5.1.1--44. Subscale Nozzle Flow Rig _ Air Data: Ramp Versus Porous Metal Designs
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Figure 5.1.1--45. Secondary Cavity Design Using Porous Stainless Steel for Flow Distribution
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FE 625395

Figure 5.1.1-46. Subscale Nozzle Flow Rig
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Figure 5.1.1-48. Gage Total Pressure Distributions At The Slot Exit
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Figure 5.1.1-50. Gage Total Pressure Distributions At The Slot Exit
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Figure 5.1.1-52. Pressure Distributions At Pressure Taps and Slot Exit

Gage Total
Pressure

psi

2

1

0

1

2
0

- (_) Porous Stainless Steel (Taps)

[] Porous Stainless Steel (Slot ExIt)

Double Perforated Plates (Taps) A

-- /\ D°ublePerf°ratedPlates(SlotExt) /thL _ "

Orifice Orifice Orifice

fl r , I I i r II
5 10 15 20 25 30 35

Location

Figure 5.1.1-53. Pressure Distributions At Pressure Taps and Slot Exit

_6S46

=,_s.o 5-52



Pratt & Whitney FR-23116

Ii

Figure 5.1.1-54. Nozzle Liner Installed On VTL For Rough Machining
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5.1.2 Manufacturing and Assembly

A coordinated nozzle program manufacturing plan was developed, including a tool design plan. Assen_y

tooling requirements were established with the P&W assembly planners. As a result, the hardware designs

included assembly and handling features to accommodate the assembly tooling.

The fabrication tool designs were completed and released for procurement and tool fabrication. The nine

major tooling fixtures were completed in the shop. Figures 5.1.2-1 through 5.1.2-3 show the Chamber Rework

Fixture, the Nozzle Assembly and Handling Fixture, and the Injector Ring EB Weld Fixture.

Inconel 625 plate samples were sent to the electroformed nickel supplier to conduct plating experiments.
These experiments were designed to provide additional information on optimum plating conditions prior to

shipping the actual nozzle liner.

Injector ring weld samples were completed in order to verify the cone-to-cone weld design of the two-piece

ring assembly. Two cone-shaped rings of Inconel 625 were welded together, simulating the actual injector ring

raw material geometry. Following EB welding, the rings were dimensionally inspected to check for movement

or misalignment that may have occurred during welding. Results of the inspection indicate that minimal offset

took place during the welding, with improved results expected on the actual parts using the welding fixture

currently being fabricated.

The subscale nozzle manifold machining and welding, preparation of the liner raw material for use, and
continuation of the chamber nickel plating to create the aft end flange were completed.

The Subscale calorimeter combustion chamber was successfully reoperated to remove the aft end tube d

manifold and nickel plating were completed. The reoperated chamber is shown in Figure 5.1.2-4. _-

The calorimeter nozzle manifold inner and outer rings were finished machined, welded together, and

inspected. The assembly is shown in Figure 5.1.2-5 just before the electron beam (EB) tier weld. The tier weld

was inspected using fluorescent penetrant and X-ray, and shows no indications or voids.

The nozzle spun liner was received from the spinning supplier Spincraft, was prepared for welding to the

manifold. A machining flange was tack welded to the liner aft end, which has an additional 1 inch of stock left

on until the final machining step, as shown in Figure 5.1.2-6. The liner was welded to the manifold using an

EB weld, which was fully inspected and also shows no indications or voids. Figure 5.1.2-7 shows the manifold

and liner tackwelded together, ready for the final weld in the EB weld chamber.

The liner/manifold assembly was mounted on a vertical turret lathe in preparation for the chamber/nozzle

interface area machining. The initial machining steps include forming the seal grooves, the secondary cavity

annulus, and the primary datums. The nozzle inner contour was finish machined in a separate machining fixture.

The assembly was then placed in a machining fixture which provides an inner mandrel for structural support,

and the outer diameter grooves will be machined. The machining of the inner contour and the grooves was

then completed.

The nozzle liner and manifold assembly were electron beam welded together, and were then installed on

the ID machining fixture to machine the final ID nozzle contour. The ID contour was then inspected using a

coordinate measuring machine and the nozzle was installed on the OD machining fixture for machining the nozzle
contour OD and the coolant grooves. The nozzle contour OD was finished down to a 0.145 in. thickne- all

over, which is the finished thickness at the top of the grooves to the nozzle hot wall ID. The grooves wet zn

rough machined and then finished machined to achieve the 0.035 to 0.045 in. wall thickness. Sonic inspec_ons
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were conducted at each rough and finish machining step for each groove. The nozzle liner is shown in Figure

5.1.2-8 during groove rough machining on the NC vertical turret lathe in the P&W machine shop. After the ID

contour, OD contour, and groove finish machining were completed, the nozzle was removed from the machining

fixture and installed on the jig bore to machine the flange threaded holes, the orifice metering holes, and the

four radial pin holes. The final machining process of installing the 0.067 in. instrumentation holes through the
nozzle groove lands was then completed. The nozzle was fully inspected, cleaned, X-rayed, and installed on the

shipping and handling fixture and shipped to the electroform nickel supplier for the liner cioseout nickel plating.

Various views of the finished machined nozzle liner are shown in Figures 5.1.2-9 through 5.1.2-11.

Nozzle liner machining was completed and the liner was sent to the plating supplier for electroformed nickel

plating. The plating supplier experienced several problems fixturing and initiating the plating. These problems

caused an additional 8-week delay in the fabrication schedule. The handling fixture, which was fabricated by

P&W and shipped with the part, is made from anodized aluminum, as is standard tool design practice to prevent
corrosion. The anodized surface treatment significantly limited the current flow into the part, which prevented

plating. The fixture had to be disassembled, the anodizing treatment removed by chem-milling, the fixture and
nozzle reassembled, and nonplated areas remasked. The overall size of the part also contributed to the schedule

delays. The part was significantly larger than previous plated parts and required more complex fixturing and

setup time for plating than was expected. After plating was completed, the outer contour nozzle was machined,

and the assembly was cleaned and put in storage.

The preceding discussions defined the manufacturing activities involved with the calorimeter nozzle,

calorimeter chamber, and assembly tooling up to early 1993. Based on direction from NASA-MSFC in late

1992 to put a hold on activities to minimize expenditures, all hardware was completed to a point at which it

was stored for future disposition.
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FE622274--41

Figure 5.1.2-1. Chamber Rework Fixture
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FE628546

Figure 5.1.2-4. Subscale Calorimeter Combustion Chamber
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FE 625286

Figure 5.1.2-5. Calorimeter Nozzle Manifold Assembly Before EB Tier Weld
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FE 625283

Figure 5.1.2-6. Calorimeter Nozzle Liner Raw Material Prepared for EB Welding
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FE 625713

Figure 5.1.2-7. Calorimeter Nozzle and Manifold Assembly in EB Weld Chamber
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Figure 5.1.2--8. Fully Machined Calorimeter Nozzle Assembly

FE 62705
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FE 627062
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Figure 5.1.2-9. Fully Machined Calorimeter Nozzle Assembly
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5.1.3 Integration and Test

The instrumentation plan originally presented in the proposal and at the Design Concept Review was revised

to incorporate suggestions made during the DCR. The updated instrumentation schedule is shown in Figure
5.1.3-1.

The preliminary test matrix as discussed in the proposal was revisited based upon DCR comments. The

suggestion was made to omit or significantly reduce the number of tests for the sonic injector configurations.
Although there is significant engine system benefit for reducing nozzle coolant inlet pressures (which can be

achieved by using sonic injector geometries rather than supersonic), the propulsion community has valid concerns

regarding the repeatability, predictability, and overall film cooling effectiveness of the sonic configurations.

However, due to the lack of applicable data and the significant incentive to investigate the sonic configurations

in this test program, the sonic configuration should not be dropped from consideration at this time. The final

test program test matrix is shown in Table 5.1.3-1.

The instrumentation plan has been updated as shown in Table 5.1.3-2 and Figure 5.1.3-2. Wall static

pressure and metal temperature measurements will be taken at nine axial locations along the length of the nozzle,
with three circumferential readings at each axial location. In addition, at six locations near the front end of the

nozzle, gas temperature measurements will be taken using ceramic posts and high temperature thermocouples

inserted through the nozzle liner wall. The gas temperature measurements are needed to assist in the transient

data analysis for determining film cooling coefficients.

Based upon the recommendation of NASA TSl16 test personnel, the hydrogen gas inlet manifold

configuration has been changed from a G-CON flange to a simple AN fitting. Since a lower pressure supply

system will now be used, the supply connections will be provided through standard tubing rather than the larger

lines. All other test stand interface hardware features are unchanged from the August 1991 Design Review.

The original goal of the nozzle test program was to provide film cooling data at full-scale nozzle operating

conditions. To be consistent with that goal, the main injector wall and core O/F ratio should be the same as

the STME main injector configuration. The 40,000 lb thrust test hardware will match the STME main injector

configurations where possible. However, durability concerns at wall O/F ratios higher than 4.0 for a chamber

pressure of 2250 psi need to be investigated. The possible wall O/F ratios being considered for the STME main
injector may be higher than 4.7, which would limit the chamber pressure to 2100 psi or significantly lower. A

modification to the test matrix might include a series of tests at a significantly higher wall O/F than 4.0 (5.0 or

higher) to obtain a wider range of data on the effects of wall O/F on film cooling. However, this data can only

be obtained at lower chamber pressures, and the applicability of this data is currently being examined.
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Table 5.1.3-2. Test Instrumentation Locations

Radial Location

0

7.5

82.5

90

97.5

108.75

116.25

131.25

138.75

148.75

156.25

172.5

180

187.5

352.5

Axial Lacation

1 2 3 4 5 6 7

Tg Tg Tg

Tw Tw Tw Tw Tw Tw Tw

Ps Ps Ps Ps Ps Ps Ps Ps

Tg T8 Tg

Tw Tw Tw Tw Tw Tw Tw

Ps Ps Ps

Tw Tw Tw

Ps Ps Ps

Tw Tw Tw

Ps Ps Ps

Tw Tw Tw

Ps Ps Ps Ps Ps Ps Ps Ps

Tg Tg Tg

Tw "lkv Tw Tw Tw Tw Tw

Ps Ps Ps Ps Ps Ps Ps Ps

Tg = Gas Temperature, Tw = tlot Wall Temperature, Ps = Static Gas Pressure

8

Tw

Ps

Tw

Ps

Tw

Ps
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Figure 5.1.3-1. Test Instrumentation Plan
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Accelerometer _ _,,____ __

TT, P$

t

Wall Temp 33
Static Pressure 87

Total Temp 51
Accelerometer 4

Not Shown:

TT, Ps - 3 Locations
Each H20 Inlet Manifold

- 39 Locations Each

H20 Exit Tube

1225O

Figure 5.1.3-2. Test Instrumentation Plan

5.1.4 Subscale Injector Performance Enhancement

The 40K subscale injector was reworked and sent to NASA-MSFC. The rework consisted of the following:

• Repaired fuel sleeve threads

• Reworked to add seal removal access scallops to the injector-to-dome and injector-to-seal grooves;
seal grooves lapped

• Machined larger instrumentation hole for an aspirated pressure tap

• Lapped injector liquid oxygen dome seal interface

• Calibrated dynamic pressure transducers

• Procured Rosemount temperature sensor

• Final cleaned and assembled.

The 40K subscale spoolpiece was also modified and sent to NASA-MSFC. The rework consisted of braze

repair to eliminate a leak at the liner-to-flange interface, machine seal surfaces, and clean and ship.

The 40K subscale combustion was also shipped to NASA-MSFC.

,cs.0 5-71





Pratt & Whitney FR-23116

References

17.

18.

19.

20.

1. Quentmeyer, R. J. "Experimental Fatigue Life Investigation Cylindrical Thrust Chambers," LeRC, NASA

TM-X-73665 July 11-13, 1977.

2. Kazaroff, J. M. and Repas, G. A., "Conventionally Cast and Forged Copper Alloy for High-Heat Flux Thrust

Chambers", LeRC, NASA TeclL Paper 2694, 1987.

3. NASA CR-168261, "Development of a Simplified Procedure for Rocket Engine Thrust Chamber Life

Prediction with Creep", by O'Dormell & Associates, Inc., Oct. 1983.

4. Wieber, E R.; Calculated Temperature Histories of Vaporizing Droplets to the Critical Point; AIAA Journal,

Vol. 1, No. 12, pp. 2764-2770, December, 1970.

5. IAfshitz, A.; Scheller, K.; Burcat, A.; and Skinner, G. B.; "Shock-Tube Investigation of Ignition in

Methane-Oxygen-Argon Mixtures" Combustion and Flame 16, 311-321 (1971).

6. Lewis, B., and Von Elbe, G.; Combustion, Flames and Explosions of Gases, Second Edition, Academic Press,

Inc., New York and London, 1961.

7. Cowell, L. H. and Lefebvre, A. H.; "Influence of Pressure on Autoignition Characteristics of Gaseous

Hydrocarbon-Air Mixtures", Paper No. 86-0068, SAE 1986 Transactions 95) (Section 6), 1-11. (1987).

8. Rosner, D. E.; On Liquid Droplet Combustion at High Pressures; AIAA Journal, VoL 5, No. 1 pp. 163-166,

January, 1967.

9. Faeth, G. M.; Dominicis, D. P.; Tulpinsky, J. F.; and Olson, D. R.; Supercritical Bipropellant Combustion;

Twelfth Symposium (International) on Combustion, The Combustion Institute, 1969, pp. 9-18.

10. Carroll, R. G.; Cormell, D. R.; and Limerick, C. D.; Performance Comparison of the Current SSME and a New

Main Injector-Main Combustor Chamber Configuration Using the JANNAF Methodology; Twenty Second

JANNAF Combustion Meeting, Jet Propulsion Laboratory, California Institute of Technology, Pasadena,
California, October 7-10, 1985.

11. Crocco, L. and Cheng, S. I.; 'Theory of Combustion Instability in Liquid Propellant Rocket Motors;"
AGARDOGRAPH No. 8, Buttersworths Scientific Pub., Ltd., London (1956).

12. Mitchell, C. E. and Eckert, K.; "A Simplified Computer Program for the Prediction of the Linear Stability

Behavior of Liquid Propellant Combustors," NASA Contractor Report 3169, (1979).

13. Rouser, D. C., and Chert, F.F., "Cooling Height Pressure Combustion Chambers with Supercritical Pressure
Water," AIAA-88-2845.

14. Dexter, C., "Burnout Heat Flux", MSFC Memorandum, for Record, August 29, 1984.

15. Svehla, R.A., and McBride, BJ. "Fortran IV Computer Program for Calculation of Thermodynamic and

Transport Properties of Complex Chemical Systems," NASA "IN kD-7056, January 1973.

16. Erland, K., "Statistical Methods Used in the Analysis of Rocket Engine Characterization Data," AIAA-

91-2285, Paper Presented at the 27th Joint Propulsion conference, Sacramento, CA, June 24-26,
1991.

Valentine, R.S., Dean, L.E., and Pieper, J.L., "An Improved Method for Rocket Performance Prediction," J.

Spacecraft, Vol. 3, No. 9, September 1966, pp. 1409-1414.

Pieper, J.L., Dean, L.E., and Valentine, R.S., "Mixture Ratio Distribution -- Its Impact on Rocket Thrust

Chamber Performance," J. Spacecraft, Vol. 4, No. 6, June 1967, pp. 786-789.

Bemstein, A., Heiser, W.H., and Hevenor, C., "Compound-Compressible Nozzle Flow." J. Applied

Mechanics, September, 1967, pp. 548-554.

Carroll, R. G.; Connell, D. R.; and Limerick, C. D.; Performance Comparison of the Current SSME and a New

Main Injector-Main Combustor Chamber Configuration Using the JANNAF Methodology; Twenty Second

u,_., R-1



Pratt & Whitney FR-23116

JANNAF Combustion Meeting, Jet Propulsion Laboratory, California Institute of Technology, Pasad*-'_,

California, October 7-10, 1985.

21. Baily, R. and Weiss, A., Rocketdyn¢, Personal Correspondence with Conn¢ll, D. and Baker, J., P&W,

May 1990.

22. Elam, Sandra K., "Subscal¢ LOX-Hydrogcn Testing With a Modular Chamber and a Swirl Coaxial Injector,"

AIAA-91-1874, Paper Presented at the 27th Joint Propulsion Confcrvnc¢, Sacramento, CA, June 24-26, 1991.



Pratt & Whitney FR-23116

APPENDIX A
HEAT TRANSFER MODELS

The following Appendix is reprinted from the first program
Bimonthly Progress Report (FR-20499-1, dated 10 October 1988).
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APPENOtX A
HEAT TRANSFER MOOELS

CHAMBER HEAT TRANSFER PREDICTION

Rocket combustion gas beat transfer levels and distributions are driven by complicar_l and
interrelated thermodynamic, chemical and fluid flow mechanisms. These mechanisms are not
only dependent on the propellant combination, the geometrical configuration, and operating
conditions such as chamber pressure and mixture ratio, but also on the physical confq_tration as
it relaum to chemical efficiency and heat release characteristicL

The two major heat transfer contributors are generally grouped in terms of convective and
combustion gas radiation components, For application within the STBE program, the convective
heat transfer is predominant mode. The radiation heat flux is typically only 10 percent of the
convective values in the subsonic portion of the chamber and diminishes further in the transonic
and supersonic portions of the chamber as the static gas tempemmam drops throughout the
expansion proce_ At the throat location where the convective heating is maximum, the
radiation component represent_ an approximate level of only 2 percent of the local heat flux Co
the walL Although _ radiation components must be Bdequately accounted for, it is no surprise
chat the prediction of the convective component captasres the majority of the attention. Of
course, when heat flux to the wall is determined empirically the measurements contain both the
convective and radiant components, Poor combu_on efficiency can substantially increase
luminosity and therefore racUation heat load, with hydmcarben fuel.

The convective process in its most simple reprasen_tdon expresses the heat flux to the wall
in terms of the product between the drivingtempe_ difference and a convective heat
transfer coeflqclent that properly accounts for the fluid flow mechanism at the wa/L

q - hs(T s- T.) (1)

where q

T;

- convective heat flux
- convective heat transfer coefficient

= adiabatic wall temperature of the
- heated surface .temperature

The heat transfer coefficient in this simple relationship is normally described in terms of
parameters that influence energy transfer across the boundary layer such as Reynolds No.
boundary layer development len_h, boundary layer thickness, err.

The actual heat transfer mechanism in the combustion chamber of a rocket rapidly
becomes more complicated than the simple representation of Equation 1 implies when the actual
process is more closely considered. The major contributors to this increase in complexity are the
chemical reaction of the propellants, the high tsmperanams .4_msante, the presence of high
turbulence levels, possible combustion inscabilitias, abnormal boundary layer development
t_ggered by recirculacing propellant flows and chemical reaction, dissociation or re-combination
within the boundary layer, _ temperature differences between the ps m_am and the heated
waft can be also cause significant variations of fluid transport propercias in and neaz the
boundary layer. Despite the difficulty in accurately accounting for these mechan/sms the most
promising methods of reliably predicting combustion chamber heat .u,anafer characteristics are
derived from" boundary layer theories.

In genera/, an attractive boundary layer analysis is initially selected for the basis of the
prediction system. The influence of ocher mechanisms, such as dissociation, propellant heac
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release and combustion efficiency are added co the analysis using appropriate theot7 or dam for
each added mechanism.

"4

Various heat transfer coeffh_ient prediction methods have been and are currently being used

within the rocket community. They encompass the simple Bartz (Reference 3) closed form

solution that come]ates closely with fully developed pipe flow theory, incompressible boundary
layer such as Sibulkin (Reference 4) and more rigorous boundary layer solutions such as the

Bar_ long form (P_erence 5) or the Mayer [nt_rral Method (Reference 6).

Since the mid 1960's Pratt & Whitney (P&W) has continuously developed its combustion
chamher/nozz/e thermal design analysis Cools around the Mayer Integral Method. This boundary

layer method was selected because of its combination of rigoroue theory, ease and speed of
computer application and applicability to wide variety of axisymmetric and free expansion

surface nozzles. The method is based on the approximate solution of energy integral equation for

boundary layers usin4j Ambrok's method (Reference 7). The simplifying assumptions in the
analysis correspond closely to thow encountered in rocket nozzle flow. Semi-empirical dnca

aesooiamt with te Blasiue fiat plate heat transfer coeffmient, with modification for variable fluid

properties based on Eckert's reference temperaCuns method (Reference 8), are used within the
analysis. The overall calculation procedure requires se input dace the cooled wall temperature

and the local free stream fluid data just outside the boundary layer.

Numerous improvements have been incorporat2_i into the P&W system, not on/y co more

accurately predict combustion chamber heat transfer characteristics, but also co increase its

flexibility and ease of use. The prediction system is a finite portion of the P&W computer code
5160 Rncket Thermal Design System. Deck 5160 not only addresses the combustion side

transfer, but has the capability to fully evaluate Cubu/ar/non-mbu]ar coolant passage thermal

and flow characmristics, properly accounting for the two-dimensional conduction effects,
curvature enhancement and surface mnshnses effects within the _ The coolant side

capebilifise of the program will not be addressed further in this section so that combustion

prediction capabilities can be more fully delineated.

A large amount of combustion gas chemical dissociation is present in the combustion

chamber. For this reason the combustion gas temperature does not provide the proper energy

driving potential; combustion gas enthalpy level is more meaningful This effect is accounted for

in the P&W analysis by modifyinl the basic convective heat flow relationship (Equation 1) co the
following.

q.h,

EDP

C_

x EOP/C,

- Enthalpy Driving PomnCial
= specific heat evaluated at Eckert reference C'_mpentt'ure.

(2)

Enthalpy driving potential, EDP, is the difference between the free stream stagnation

enthalpy and the enthalpy level at the wall. Figure 12 is a graphic representation of the enthalpy

driving potential The sCaSnation enthalpy of the combustion gases is strongly dependent on
chamber pressure due to dissociation of the combustion products. Diunciation of the combustion

products occurs at tempera_tre above 3000"R, which has been selected as the reference point. At

temperatures below 3000"R the energy state of the gas can be represented ,tdequateiy with

specific heat.
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Enthalpy

EDP " ho - '.%hx (1.0 - 0.44_') - Ah,,, - Co(T,,_ - T,,=)

C= (T_ - T..,,)

T 8 TTOTm.
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Dependent
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Gas

FO 3455_

Figure 12. Combustion Side Enthalpy Driuir_ Potential

The combustion e_ciency and the heat relea_ of the chemical reaction defines the local

hot gas energy state for heat Lnmsfer. The actual energy state of the ga_s at the throat plane, H e

is related to the ideal value Hg' by the combustion efficiency 11 c*:

H,-H.
I-I,' - H, " c')' (3)

where Ho - entering energy states of the propellants

The energy intensity increases as the reaction process progresses through the chamber. The

energy states and corresponding heat transfer driving potential are lower near the injector. The

energy release profile can be generated within deck 5160, based on theore_cal behavior, or it can

be input specificaUy over the chamber length to better represent a particular injection/propellant

combination. Figure 13 present= typical predicted values of combustion efficiency with chamber

characteristic length.

Wall curvature within combustion chamber impacts the boundary Layer and can therefore

modify the anticipated local heat transfer levels. It has been observed and reported (e.g.

Reference 9) that heat transfer within cubes can be altered by ctwving the tube. An enhancement

in heat transfer coefficient results on the concave side of the tube and an attenuation occurs on

the convex side. A similar effect occurs as a result of the necessary wall curvatures within a

combustion chamber, even though the overall geometrical features differ somewhat. Heat

transfer rates for the propellants of interest to the STBE program have been measured with

cooled calorimeter chambers by References 2 and 10. Figures 14 and 15 present comparisons
between the local measured heat flux levels and those predicted by _che P&W Rocket Thermal

Design System without accounting for any wall curvature effects. It should be noted that the
measured heat transfer rates are higher than predicted immediately upstream of the throat where

the chamber is concave and vice versa at the throat where the chamber is convex.
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The P&W Rocket Thermal Design System has been modified using wall curvature heat
transfer enhancement factors obtained using regression techniques to the empirical data.

Incorporation of these relationships allows the influence of chamber curvature co be properly

addressed in the prediction of combustion gas convective heat transfer coefficients. Figures 16

and 17 compare the measured data to the P&W prediction system us/n_ the modifications for
curvature enhancement effect¢ Significant improvement in the predictions is obvious for both

sets of data.

Although the gas radiation component is generally small relative to the convective heat flux

component, it is evaluated within the P&W Rocket Thermal Design System using a method

formulated by Reference 11.

Predictions concerning the effects of O/F biasing on combustion chamber heat flux levels

are obutined by assuming no mixin_ between the modified outer flow stream and the internal

core of the main gas. In these cases the heat transfer to the wall is prsd/cted based on the enerlEy

level and properties of this outer scream. In genera/th/s scream would be operating s¢a lower

temperature level than the main core. The radiation heat flux to the wall, however, is based on
core conditions since the majority of the radiating cloud is at; th_ core conditions and the outer

stream is essentially transparent to the radiation.

Another gee side phenomenon that could be encountered with a hydrocarbon fuel such as

methane is carbon deposited at the wall Significant deposition of solid carbon at the wall was not

observed by either Reference 2 or 10. If large amounts are depesi.ted, the carbon acts as an
insulator and reduces the heat flow co the wall; whereas, small amounts of carbon being

transiently deposited could disrupt the boundary layer and slightly increase the heat transfer

rates. Based on the data presently available (Reference 2 and 10) any thermal impact of carbon

coating on the wall is anticipated to be negligible.
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Usin8 Curu_ Enhancemer=

A_ previously mentioned, the inr_rnal wall thermal analysis procedure accoun= for passage

curvature, surface roughness and la_ wall-co-coolant bulk temperat'u_ differences on the
convective hea¢ transfer coemcient of the coolant. Two-dimensional conduction effect_ ate
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automatically evaluated within the program and are applied to the combined conduction/c-

onvection mechanism in the determination of chamber wall temperacare.
.m

The coolant side heat transfer characteristics for hydrogen coolant are predicted using a

modification of the DiCCus-Boelter correlation (Reference 12). The basic correlation is modified

for large wall-to-bulk coolant temperature differences by evaluating the fluid transport

properties and density at a film temperature equal to the arithmetic mean of the coolant side wall
temperacura and tim local coolant static temperature.

The effects of passage roughness on coolant heat tnmder coefficient are based on the

experimental work conducted by Dipprey and Sabersky (Reference 13). Heat transfer and fluid

pressure drop data were acquired using water with selected values of sand grain roughness over a

range of Pranctfl and Reynolds Numbers.

Typical results presenting the ratio of roughened wall heat transfer-to-smooth wall heat
transfer coefficient as a function of Reynolds Number and Prandtl Number are shown in

Figure 18. Similar rt_ulta for friction factor ware also determined and are incorporated in the

P&W Rocket Thermal Design Program.

The curvature enhancement factor used for the coolant passages were derived f_om the

empirical data presented in Reference 9 through numerical regression techniques. The curvature
results in an increase in coefficient on the concave side of the cam and reduction on the convex

side. The level of enhancement depends on the ratio of the tube radius of curvature co the cube
diamemr and also the angular position through the turn, as shown in Figure 19.

Coolant entrance effecm are also contained in the analysis to account for increased heat

transfer coefficients within a developing boundary layer. The entrance effects from a variety of

sources hasbean complied within Reference I4. Figure 20 summarizes the results of this

compilation and presents the enhancement, expressed as the ratio of local Nuseelt to fully
developed Nus_lt Numbers, as a function of normalized length, X/D.

A forwardmarching,finitedifference,iterativeanalysisis used withinthe program to

determinewallt_mperaPu.,1,heatflux,coolanttemperacam and coolantpr_mum throughoutthe

chamber. The coolant pressure losses account for entrance and exit effects, friction loss,

momentum loss, heat addition and local turning effects. Wall temperarara at each calculation

station is determined by iteratively varying the local heat fluL

Modified one-dimensional heat transfer analysis is used for the initial heat flux and wall

temperature determination. The modification consi_ms of a simplified fin analysis to account for
the approximation of two-dimensional conduction characteristics of the passage webs and
backwall. At specified intervals a nodal analysis is conducted to accurately evaluate the two.
dimensional effects. Results of each nodal analysis are then used within the program co adjust

the modified one-dimensional assumptions for subsequent calculation stations specified by the

user. A sample of the output from a typical two-dimensional calculation station is shown in

Figure21.
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